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4.2.1 AIRS Atmospheric Layering Grid

The atmospheric pressure layering grid for the AIRS-RTA model was selected to

keep radiative transfer errors below the instrument noise.  Grid characteristics are a

function of the spectral region(s) of observation, the instrument resolution, and

instrument noise.  The speed of the final fast transmittance model will depend on the

number of layers, so excessive layering should be avoided.

Line-by-line simulations indicate some channels need a top layer with pressures as

small as 0.01 mb, an altitude of ~ 80 km.  The region of primary importance to AIRS is

the troposphere and lower stratosphere, where layers on the order of 1/3 of the nominal 1

km vertical resolution of AIRS retrievals are desired.  Smoothly varying layers facilitate

interpolation and avoid large changes in layer effective transmittances.  The following

relation defines the pressure layer boundaries selected for AIRS:

Pi = (ai2 + bi + c) (4.2.4)
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FIGURE 4.2.3: AIRS-RTA MODEL PRESSURE LAYER STRUCTURE. (NOTE: LAYER NUMBER

IS INVERTED IN THIS FIGURE COMPARED TO THE TEXT.)
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where P is the pressure in millibars; i is the layer boundary index and ranges from 1

to 101; and the parameters a, b, and c were determined by solving this equation with the

following fixed values:  P1 = 1100 mb, P38 = 300 mb, and P101 = 5x10-3 mb.  The 101

pressure layer boundaries in turn define the 100 AIRS layers.  These layers vary

smoothly in thickness from several tenths of a kilometer near the surface to several

kilometers at the highest altitudes.  Figure 4.2.3 displays a plot of this atmospheric layer

structure.

4.2.2 Fast Transmittance Modeling

Over the years, a number of fast transmittance models have been developed for

various satellite instruments [McMillin and Fleming, 1976; Fleming and McMillin, 1977;

McMillin et al., 1979, 1995; Scott and Chedin, 1981; Susskind et al., 1983; Erye and

Woolf, 1988; Chéruy et al., 1995].  However, some of these models only have been

applied to the microwave region where the measured radiances are essentially

monochromatic and easier to model.  AIRS required a major new effort in the

development of its RTA, some of the details of our model in its early stages can be found

in Hannon et al. [1996].  The AIRS-RTA model has already been adopted by the

EUMETSAT IASI Science Team (private communication, Marco Matricardi , ECMWF),

and for GOES applications (private communication, Paul Van Delst, University of

Wisconsin).

The AIRS-RTA most closely follows Susskind et al. [1983] by parameterizing the

optical depths rather than transmittances for channels where the influence of water vapor

is small.  Channels sensitive to water vapor are modeled using a variant of the Optical

Path TRANsmittance (OPTRAN) algorithm developed by McMillin et al. [1979, 1995].

The AIRS infrared fast model is thus a hybrid of both Susskind’s approach and

OPTRAN.

The AIRS-RTA model actually produces equivalent channel averaged optical depths,

k's, which are related to the layer transmittances, τ 's, by τ = exp(-k).  The optical depth is

the product of the absorption coefficient and the optical path.  For AIRS, a fast model for

k is much more accurate than a model that directly returns layer τ 's. k's are computed for
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each of the 100 atmospheric layers used for AIRS radiative transfer. The current AIRS-

RTA model allows water, ozone, methane, carbon monoxide, carbon dioxide, the

temperature, and local scan angle to vary.  All other gases are treated as ‘fixed’ gases.

These gases are “fixed” in the sense that we only need to parameterize their dependence

on temperature, not amount.  Although the observed radiances are primarily sensitive to

temperature via the Planck function, the temperature dependence of the transmittances is

also important.

The following discussion outlines the development of a parameterization of the

convolved layer transmittances as a function of the atmospheric state.  Most of the

complications of this parameterization arise from the loss of Beer’s law, which forces us

to introduce terms in the transmittance parameterization for a given atmospheric layer

that depend on layers above the particular layer under consideration.    These

parameterizations, which are functions of the atmospheric profile, are derived from least-

squares fits to a statistical set of atmospheric profiles in order to ensure that we can

faithfully produce the appropriate transmittances under all atmospheric conditions.  We

call this statistical set of profiles our “regression profiles”.

4.2.2.1 Breakout of Gases

Once the atmospheric layering grid and regression profiles (see later discussion) are

selected, the monochromatic layer-to-space transmittance can be calculated.  The gases

are distributed into sub-groups that are either fixed or variable.  The details of how the

transmittance model simultaneously handles several variable gases is somewhat

complicated and beyond the scope of this document.  For simplicity, this discussion is

restricted to fixed gases (F), water vapor (W), and ozone (O).  The breakout of the other

variable gases is similar.  The monochromatic layer-to-space transmittances for the 48

regression profiles are calculated for each pressure layer, grouped into the following three

sets, and convolved with the AIRS SRF,

F∞,l = τ∞,l (fixed)

FO∞,l = τ∞,l (fixed + ozone)

FOW∞,l = τ∞,l (fixed + ozone + water)

(4.2.5)
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Water continuum absorption is excluded since it varies slowly with wavenumber and

does not need to be convolved with the AIRS SRF. In addition, separating out the water

continuum improves our fit of the local line water transmittance. Later, the water

continuum is factored into the total transmittance as a separate term.

For each layer l, the convolved layer-to-space (∞,l) transmittances are ratioed with

transmittances in the layer above, l - 1, to form effective layer transmittances for fixed

(F), water (W), and ozone (O) as follows:

Fl
eff =

F∞,l

F∞,l −1

Ol
eff =

FO∞,l

FO∞,l−1
÷

F∞,l

F∞,l−1

Wl
eff =

FOW∞,l

FOW∞,l−1
÷

FO∞,l

FO∞ ,l−1

(4.2.6)

Forming these ratios is the above manner reduce the errors inherent in separating the

gas transmittances after the convolution with the instrument spectral response function.

The total effective layer transmittance can be recovered as follows,

FOWl
eff = Fl

eff ∗O l
eff ∗ Wl

eff =
FOW∞,l

FOW∞,l−1 (4.2.7)

The convolution of a product of terms is in general not the same as the product of the

terms convolved individually.  However, the above formulation guarantees the product of

all the layer transmittances from layer l to ∞ exactly returns FOW∞,l., if the layer

transmittances are exact.

The zeroth layer transmittance (i.e. when l - 1 = 0) is taken to be exactly 1.0.  The

negative logarithm of these layer effective transmittances is taken to get effective layer

optical depths,

kfixed = − ln Feff( )
kwater = − ln Weff( )
kozone = − ln Oeff( )

(4.2.8)



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

35

which become the dependent variables in the fast model regression.

4.2.2.2 Predictors

The independent variables in the fast model regression, called the predictors, are a

set of variables relating to the atmospheric profile. The optimal set of predictors used to

parameterize the effective layer optical depth depends upon the gas, the instrument SRFs,

the range of viewing angles, the spectral region, and even the layer thicknesses.  In short,

no one set of predictors is likely to work well in every case.  Finding the set of predictors

which give the best results is, in part, a matter of trial and error.  However, there are some

general trends.

For an instrument such as AIRS with thousands of channels, it is difficult to develop

individual optimal predictors for each channel.  The AIRS-RTA uses seven sets of

predictors, each corresponding with a subset of channels.  These sets of predictors were

determined by extensive trial and error testing, as well as consideration of the relative

importance of the variable gases in each channel. Supplemental sets of predictors are

used for OPTRAN water, the water continuum, and variable CO2.

The regression is prone to numerical instabilities if the values of the predictors vary

too greatly.  Consequently, we follow the usual practice of defining the predictors with

respect to the values of a reference profile, either by taking a ratio or an offset.  There is

also a danger of numerical instability in the results of the regression, due to the

interaction of some of the predictors.  Sensitivity of the output to small perturbations in

the predictors is avoided by systematic testing, but there are practical difficulties in

detecting small problems since we are performing on the order of 1 million regressions.

As an example, the predictors for the fixed gases for one of the seven sets are shown:

1)a 2)a2 3)aTr

4)aTr
2 5)Tr 6)Tr

2

7)aT z 8 ) a Tz Tr

(4.2.9)

where a is the secant of the local path angle, Tr is the temperature ratio Tprofile/Treference,

and Tz is the pressure weighted temperature ratio above the layer
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FIGURE 5.1.4  SURFACE CLASSIFICATION ALGORITHM

Thus the surface model takes a baseline   Θso and adds or subtracts a smooth function

of frequency, to correct for surface roughness, for errors in the dielectric constant model,

for a mis-classification of the surface, etc.  For example, it was found that (4) could



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

62

approximate a blackbody surface (Θs = Ts) to within 0.5% at all AMSU and HSB

frequencies, even when   Θso ν( )  was computed for seawater, if s = 1.2 and

Ro, To ,and T∞  were adjusted to appropriate values for a given temperature.  The

discussion in Grody (1988) suggests that a function such as (4) is capable of

approximating the emissivity of a wide variety of surfaces.

The retrieval algorithm fixes s at the value 1.2 and treats Ro, To ,and T∞ as

uncorrelated free parameters for which it solves, as described below.  Mean values are set

to

R o = 3.5

To = 0

T∞ = 0

(5.1.7)

and variances are set to

SRo
= 2.25

STo
= 100 (Kelvin)2

ST∞
= 100 (Kelvin)2

(5.1.8)

5.1.2.2 Atmospheric Moisture and Condensation Model

Measurements of brightness temperature at the HSB frequencies are a result of the

vertical profile of atmospheric opacity relative to temperature and hence do not by

themselves distinguish, at any given altitude, between opacity due to water vapor and

opacity due to liquid water.  However, the physics of water vapor condensation add some

a priori  information or constraints.  Cloud coverage is parameterized as in the stratiform

condensation model of Sundqvist et al. (1989), where a relative humidity threshold

determines the onset of condensation.  If the observing instrument had infinitesimal

horizontal resolution, an appropriate threshold would be 100% relative humidity.

Although the water vapor profile is saturated within the cloudy part of the field, it is

assumed that the condensation process is not spatially resolved, hence the threshold is

less than 100%.  Currently, the threshold isHcth = 85%



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

63

The H profile stored by the algorithm serves to define both the vapor and cloud

liquid water density profiles, as illustrated in Figure 5.1.4.

FIGURE 5.1.5  WATER VAPOR (ρV) AND CLOUD LIQUID (ρL) DENSITIES AS FUNCTIONS OF H

The average vapor density in the field of view is

ρv =

ρs H 100[ ] if H ≤ H cth

ρs 100 − Hcth( ) 2b − b2( ) + Hcth[ ] 100 if Hcth < H ≤ 200 − Hcth( )
ρs if H ≥ 200 − Hcth( )

 

 
  

 
 
 

(5.1.9)

and the liquid water density averaged over the field of view is assumed to be given

by

ρL =
0 if H ≤ H cth

CL ρS b if H > Hcth

 
 
 

(5.1.10)

In the above, ρs is the saturation value of vapor density,

b =
H − Hcth

2 100 − Hcth( ) , (5.1.11)



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

64

and CL is a preset constant, currently 0.02.  Note that when H ≤ H cth , H is equal to

relative humidity, but H can take values > 100% in cloudy regions.

The saturation vapor density is computed from the temperature profile.  Saturation

vapor density is calculated with respect to liquid water (by extrapolation) even when the

temperature is below 273 K, because ice clouds are not considered within the context of

this algorithm.  (Absorption from ice is much less than from liquid water, and scattering

is not included in the radiative transfer formulation.)  This model therefore allows

supercooled liquid water and water vapor greater than the saturation value over ice.

5.1.2.3 Estimation of Surface Brightness and Atmospheric Moisture

This part of the algorithm is based on retrieval methods described by Wilheit (1990),

Kuo et al. (1994), and Wilheit and Hutchison (1997).  It uses the four channels of HSB

and channels 1, 2, 3 and 15 of AMSU.  The HSB measurements are weighted averages

over 3x3 spatial arrays which approximate the AMSU field of view.  The H profile and

the three surface brightness parameters Ro, To ,and T∞ can be concatenated into a vector

  
v 
Y .  For small departures of   

v 
Y  from an existing estimate   

v 
Y estn−1

, measured brightness

temperature   
v 
Θ obs  is assumed to be related to the true   

v 
Y  profile by

  
v 
Θ obs =

v 
Θ + WY

v 
Y −

v 
Y estn−1[ ]+ e

 (5.1.12)

where   
v 
Θ  is a brightness temperature vector computed from the current values of

temperature, moisture, and surface brightness, WY( )ij = ∂Θi ∂Yj  and e represents

unknown measurement errors.  It follows from (4) and the chain rule for differentiation

that the matrix elements of WY  corresponding to the surface parameters are equal to

∂Θ ∂ Ro = ∂Θ ∂Θs( )  R ν( ) To − T∞( ) Ro + R ν( )( )−2 (5.1.13a)

∂Θ ∂To = ∂Θ ∂Θs( ) Ro  Ro + R ν( )( )−1 (5.1.13b)

∂Θ ∂T∞ = ∂Θ ∂Θs( )  R ν( ) Ro + R ν( )( )−1 (5.1.13c)

where, from (5.1.3),
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∂Θ ∂Θs = τ 1 − Θsky Ts( ). (5.1.14)

The elements of WY  corresponding to H values are

∂Θ
∂H

= G •
∂κ
∂ρv

•
∂ρv

∂H
+ γ

∂ρL

∂H

 

 
 

 

 
 ,

(5.1.15)

in which G = ∂Θ ∂κ  where κ  represents the opacity of the layer, and γ = ∂ κ ∂ρL .

G is equal to the integral over an atmospheric layer of the function G(h) for which an

expression is given by Schaerer and Wilheit (1979).  The rapid transmittance algorithm

computes the coefficient γ in the small-droplet (Rayleigh) approximation.  Hence, it is

intended to be applied only to non-precipitating cloud situations.  A quadratic model is

used to compute the opacity of water vapor:

κ = β1ρv + β2ρv
2 + other contributions; (5.1.16)

hence

  

∂κ
∂ρv

= β1 + 2β2ρv + K (5.1.17)

where

β1 = β ρvest
,Test( ) − β2ρvest

,
(5.1.18)

β2 = dβ dρv (5.1.19)

The coefficientsβ  and dβ dρv  are computed by the rapid transmittance algorithm

using the temperature profile retrieval and the initial moisture profile.  As a consequence

of (5.1.9-11), ∂ρv
∂H  and ∂ρL

∂H  depend on H as follows:

∂ρv

∂H
=

ρs 100 if H ≤ Hcth

ρs 1− b( ) 100 if Hcth < H ≤ 200 − Hcth( )
0 if H ≥ 200 − H cth( )

 

 
 

 
 

(5.1.20)
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∂ρL

∂H
=

0 if H ≤ Hcth

CL ρS 2 100 − H cth( ) if H > Hcth

 
 
 (5.1.21)

The estimate of   
v 
Y  is obtained by Newtonian iteration (see Rodgers, 1976), except that

Eyre’s (1989) method of damping is used to avoid large relative humidity increments,
because of the nonlinearity of the problem:

  
v 
Y estn

=
v 
Y estn−1

− δ 
v 
Y estn−1

−
v 
Y esto[ ] + δ SYWY

T 
v 
X Y (5.1.22)

in which   
v 
Y esto

 contains the a priori mean parameter values, SY  is the a priori

covariance matrix of   
v 
Y , superscript T indicates transpose,   

v 
X Y  is the solution vector to

  
WYδ SY WY

T + Se[ ] v X Y =
v 
Θ obs −

v 
Θ  +  WY δ 

v 
Y estn-1

 -  
v 
Y esto[ ] (5.1.23)

where Se  is the (assumed diagonal) covariance matrix of e, and

δ =
1.0 if Θi obs

− Θi( ) ≤ 10 K for all channels i

0.1 otherwise

 
 
 

  
(5.1.24)

Here δ  is a scalar rather than a matrix as in Eyre’s paper.  The parts of   
v 
Y esto

 and

SY  corresponding to relative humidity were calculated from the TIGR profile ensemble

(Chedin et al, 1985) while the surface parts are given by equations (5.1.7-8).  For the

moisture channels, the measurement error covariance Se  is the sum of contributions due

to instrument noise plus a diagonal error of (1.5 K)2 which approximately represents

errors in Θ  resulting from errors in the temperature profile retrieval.  It is important to

note that because convergence is determined from the brightness temperature residuals,

which in turn are computed using the vapor and liquid column densities, the role of H in

this algorithm is only to introduce the a priori statistics and constraints.

The estimated H profile is limited by 1 percent from below and from above by a value

which converts to 1 g/m3 liquid water density.  This latter value is intended as an

approximate upper limit for non-precipitating cloud densities, and hence it will tend to

leave large brightness temperature residuals in situations of precipitation, and especially

when scattering is occurring (if these are not excluded by use of the precipitation flag).

After update of   
v 
Y  by (5.1.22-23), the water vapor and liquid water profiles are computed
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from (5.1.9-11), and surface brightness is computed for both window and sounding

frequencies from (5.1.4), using the new estimate.

5.1.2.4 Estimation of the Temperature Profile

The atmospheric temperature vector is augmented by Ts , which is considered to be

distinct from the air temperature near the surface.  The measured Θ's used in the

temperature profile retrieval are channels 4-14 of AMSU.  Given an existing estimate

  
v 
T estn−1

, the new estimated profile is to be determined from a vector Θobs  of observed

brightness temperatures, which for small difference profiles   
v 
T −

v 
T estn−1

 is related to the

true profile   
v 
T  by

  Θobs = Θ +WT  [
v 
T −

v 
T estn−1

] + e (5.1.25)

in which Θ is the brightness temperature vector that would theoretically be emitted

from the atmospheric profile described by   
v 
T estn−1

.  The sensitivities of the measured Θ's

to the elements of the temperature profile vector constitute the observation matrix WT .

The elements of this matrix corresponding to the atmospheric part of the temperature

vector are given by

∂Θ ∂T = K + G ∂κ ∂T (5.1.26)

where K is equal to the temperature weighting function as defined by Schaerer and

Wilheit (1979) integrated over the given atmospheric layer, G = ∂θ ∂κ , and ∂κ ∂T  is

computed by the rapid transmittance algorithm.  The second term on the right side of (26)

is a small correction to the temperature weighting function.

The elements of WT  corresponding to Ts  are obtained by partial differentiation of

Eq. (3):

∂Θ
∂Ts

=
τ Θsky Θs

Ts
2

(5.1.27)
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The dependence on Ts  is nonlinear here because Θs is considered to be a known

input from the moisture algorithm. If the validity of a channel is zero, then the row of

WT  corresponding to that channel is set to zeros.  The dimensions of the matrix remain

the same.

The covariance of the temperature vector was computed from the TIGR ensemble

(Chedin et al., 1985).  The difference between Ts  and the air temperature near the surface

(T1013) is assumed to have zero mean and standard deviation of 4 K.  Thus, Ts  has a

larger variance, by 16 K2, than T1013, but its covariances with other levels are equal to

those of T1013.

Initially, the temperature profile, including surface temperature, is set to a

climatological profile   
v 
T esto

 which depends on latitude and season.  The new, minimum-

variance estimate of  
v 
T  is obtained by Newtonian iteration (Rodgers, 1976, eq. 101)

  
v 
T estn

=
v 
T esto

+ STWT
T v 

X T , (5.1.28)

where ST  is the temperature covariance matrix, and XT is the solution vector to

  
WTSTWT

T + Se[ ] v 
X T =

v 
Θ obs −

v 
Θ + WT

v 
T estn−1

−
v 
T esto[ ] . (5.1.29)

The error covariance matrix Se  includes the effects of surface brightness uncertainty

and instrument noise.

5.1.2.5 Iteration Procedure and Convergence Tests

After the temperature profile is updated using (28) and (29), the algorithm returns to

the moisture and surface-brightness section for another iteration of (22) and (23), using

weighting functions computed for the updated temperature and moisture profiles.

Convergence is tested separately for the temperature channels and for the

moisture/surface channels; iteration of either part of the algorithm is suspended when one
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of the following conditions is met : (1) the computed brightness temperature vector   
v 
Θ 

meets the closure criterion

2
Θobsi −Θ i[ ]

i
2∆T

i=1

NB

∑ ≤ NB , (5.1.30)

where ∆Ti  is the instrument noise on channel i and NB  is the number of valid

elements in   
v 
Θ obs ; or (2) when successive computations of the left side of (30) change by

less than 1% of the right side, for the temperature channels, or 2% for the

moisture/surface channels; or (3) when the number of iterations exceeds a preset limit,

currently 12 for the temperature channels and 16 for the moisture/surface channels.

Typically, iteration of the temperature profile ceases after one or two iterations, but the

moisture profile often requires six or more iterations.

If the mean square of brightness temperature residuals for the HSB channels is

greater than a preset threshold value, then an ice scattering flag is set at all altitudes for

which clouds are present and the temperature estimate is below 273 K.  The scattering

threshold is currently set at 64 (i.e., 8K rms per channel).
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5.2  Cloud Clearing

5.2.1  Local Angle Adjustments of AIRS Observation

The cloud-clearing algorithm assumes that the observed AIRS footprints falling

within the composite AMSU retrieval footprint differ only in the cloud amount.  Other

parameters, such as the viewing angle, are assumed constant over the 3 x 3 array of AIRS

footprints being used.  This means the 9 AIRS footprints at 3 different zenith angles (ϕ )

must be adjusted to a common central zenith angle (ϕcen ) before cloud clearing is

attempted.

The coefficients of the correction are based on synthetic regression, a process in

which regression coefficients are generated using radiances that are simulated for a range

of cloud conditions and profiles that cover the expected atmospheric range. AIRS

radiances are calculated for each of the 90 AIRS viewing angles and AMSU radiances are

calculated for the AMSU footprint viewing angle.  Noise is added, but care must be taken

that it be treated properly.   The radiances being calculated are an attempt to simulate the

measurement that would have been observed if the viewing angle was different.  Thus all

other factors, including the noise, do not change with angle.  What this means for the

simulation is that the added noise is random over the set of profiles and for each channel,

but is constant over the viewing angle.  In other words, once the noise is determined for a

channel and a profile, that same noise is used for all 90 AIRS viewing angles.  It must

only be constant over the 3 viewing angles that cover each AMSU footprint, but it is

easier to keep it constant over all 90 spots.

Let prof be the profile index, fp be the footprint number, ν be channel frequency and

ϕ be the zenith angle, respectively; the noisy radiance for a given profile, footprint,

channel and local zenith angle is:

R prof,fp,ν,ϕ( ) = Ro prof,fp,ν,ϕ( ) + ε prof,fp,ν( ) (5.2.1)

where Ro prof,fp,ν,ϕ( ) is the noise free radiance, and ε prof,fp,ν( ) is the noise for

the particular profile, spot, and channel.  The consequence of not treating the noise
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properly is to cause large errors in the predictants used to generate the coefficients, with a

corresponding adverse effect on the resulting coefficients.  Many angle adjustment

procedures currently in use do not properly handle the instrumental noise.

In the following discussion, the term "weighting function" is used to denote the

contribution function that describes the region of the atmosphere being viewed by a

particular channel.  The observed radiance for a particular channel changes with angle in

two ways.  One is that the weighting function peaks in a higher region of the atmosphere

when the angle moves away from nadir.  The other is that the weighting function

becomes slightly narrower.  This occurs because, to a first approximation, the majority

contribution to the observed radiance for a particular channel arises within a confined

slab of the atmosphere.  When viewed at an angle, the slab is thinner in atmospheric

height.  For the small angles under consideration, the second effect is small.  If the

weighting function peak for a channel is raised slightly in the atmosphere, there is a linear

combination of the given channel with nearby channels that, for a given profile, provides

the same radiance at the observed angle as the given channel would have provided if

observed at nadir.  The correction procedure employed here seeks to find and use that

linear combination.

For a given channel, regression coefficients are generated that give the change in

radiance as a linear function of observed radiances.  Radiances are used rather than

brightness temperatures to avoid Planck equation calculations.  The exponentiation

within the Planck equation is computationally intensive.  Furthermore, an error can result

if a low temperature coupled with noise causes the calculated value to go negative.  For

daytime conditions, the predictors are principal component scores of the eigenvectors of

the radiances plus the cosine of difference of the solar zenith angles between the AIRS

and AMSU observations.  For nighttime conditions the predictors are the principal

component scores of the eigenvectors of the radiances.  The additional term for daytime

conditions is proportional to the change in solar energy falling on a horizontal surface due

to the change in viewing angle.  This term is important for the shortwave channels.
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In applying the angle correction, the first step is to normalize the observed radiances

by dividing by the instrumental noise for the given channel.  The next step is to generate

the eigenvectors of the predictors.  In practice, the regression uses the 45 principal

component scores for the 45 eigenvectors with the highest eigenvalues as predictors.  Use

of the eigenvectors prevents the solution from becoming singular.  For daytime, the

matrix of predictors is given by:

Xday =
Ro prof,fp,ν,ϕ( )

ε ν( ) + cos(φ) − cos φcen( )( ) 

 
 

 

 
 × E

(5.2.2)

for nighttime, the matrix of predictors is given by:

Xnight =
Ro prof,fp, ν,ϕ( )

ε ν( )
 

 
 

 

 
 × E

(5.2.3)

where E  denotes the matrix of eigenvectors and ε ν( ) denotes the instrumental noise

for the channel.  Once the predictors are available, the regression is given by:

  
v 
A ν,ϕ( ) =

v 
C o ν,ϕ( ) +

v 
C ν,ϕ( )

v 
X ϕ( ) (5.2.4)

where   
v 
C ν,ϕ( ) denotes the vector of regression coefficients.

The vector of adjusted radiances may then be computed:

  
v 
R ν,ϕ( )angle_adjusted=

v 
R ν,ϕ( )obs +

v 
A ν,ϕ( ) (5.2.5)

where   
v 
R ν,ϕ( )obs denotes the vector of original measured radiances.

Separate coefficients are generated for day and night.  Although the daytime

coefficients may be used to calculate the adjusted radiances at night, the errors that are

generated are of the same magnitude as those produced during the day and thus larger

than they would otherwise be.  While the errors in the daytime corrections are small,

nighttime corrections produced with nighttime coefficients are much more accurate.  This

is an important consideration because in daylight, the visible channels can be used to help

cloud detection.  At night, cloud detection has to rely on relationships between channels
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at different wavelengths.  The increased accuracy for the short wavelength channels is an

important factor in the ability to detect clouds.

5.2.2 Principles of Cloud Clearing

Infrared observations at most wavelengths are affected by clouds in the field-of-

view.  Three basic approaches used for accounting for effects of clouds in satellite remote

sensing are:  1) identify clear areas and only perform retrievals in those areas, with no

cloud correction needed; 2) use channel observations in adjacent potentially partially

cloudy scenes to reconstruct what the channel radiances would have been if the scenes

were clear, and use these reconstructed observations to determine geophysical

parameters; and 3) determine both surface and atmospheric geophysical parameters, as

well as cloud properties, from the radiance observations themselves.  An example of the

first approach is given by Cuomo et al.(1993).  Eyre (1989a, 1990) has used the third

approach in simulation by assuming an unknown homogeneous amount of black clouds at

an unknown pressure, and attempted it with real TOVS data as well (Eyre, 1989b).  Our

approach, like that used in Susskind (1993), is of the second type and is an extension of

that used by Smith (1968), Chahine (1974), and Chahine (1977).  This approach utilizes

satellite observed radiances, R i,k , corresponding to channel i and field-of-view k, made

over adjacent fields-of-view.  In this approach, there is no need to model the radiative and

reflective properties of the clouds.  The only assumption made is that the fields-of-view

are homogeneous except for the amount of cloud cover in K different cloud formations in

each field-of-view.  R i,clr  the radiance which would be observed if the entire field of

view were clear and   R i,cld,l , the radiance which would be observed if the entire field of

view were covered by cloud formation   l , are therefore assumed to have the same

respective values in each field-of-view.  If the observed radiances in each field-of-view

are different, the differences in the observed radiances are then attributed to the

differences in   αlk , the fractional cloudiness for cloud formation   l  in field-of-view k.

Using the above assumptions, Chahine (1977) showed that the reconstructed clear-

column radiance for channel i, ˜ R i,clr , can be written as a linear combination of the

measured radiances in the K+1 fields-of-view, R i ,1 . . R i,K+1 , according to
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˜ R i,CLR = R i,1 + η  1 R i,1 − R i,K+1[ ] + . . . η k R i,1 − Ri, K+2( )− k[ ] + . . .ηK R i,1 − Ri,2[ ]
(5.2.6)

where η1 . . .ηK  are unknown channel independent constants, and K+1 fields-of-view

(FOV's) are needed to solve for K cloud formations.  The fields-of-view are ordered such

that FOV 1 is the clearest field-of-view based on observations in the 11 µm  window (the

field-of-view with the highest 11 µm radiances is assumed to be FOV 1) and FOV K+1 is

the cloudiest.  Thus η1 multiplies the largest radiance differences and ηK  the smallest.

Once η1 . . .ηK  are determined, Equation (5.2.6) is used to produce the reconstructed clear

column radiances for all channels used in the retrieval process.  The reconstructed clear

column radiances are then used when solving for the geophysical parameters. This

approach has been successfully applied to fields-of-view, assuming one cloud formation,

in the analysis of HIRS2/MSU operational sounding data by several authors (McMillin

and Dean, (1982), Susskind et al. (1984), Susskind and Reuter (1985a) and Chahine and

Susskind (1989)) and is the method used by NOAA/NESDIS in production of their clear

column radiances used in generation of operational HIRS2/MSU retrievals (McMillin and

Dean, 1982).    Chahine and Susskind (1989) show that retrieval accuracy, verified by co-

located radiosondes, does not degrade appreciably with increasing cloud cover, for

retrieved cloud fractions of up to 80%. Susskind and Reuter (1985b) have performed

simulations with two cloud formations and three fields-of-view for the AMTS instrument

-- an earlier version of AIRS (Chahine, et al., 1984), used in conjunction with MSU.

The key to determining optimal values of η lies is in the best estimation of ˜ R i,CLR .

There are two basic approaches to this.  The first uses regression-based relationships

between microwave channel brightness temperatures and AIRS clear column radiances.

This will be referred to as the regression based approach.  The second computes the clear

column radiances from a physical state, which is consistent with the microwave

radiances.  This will be referred to as the physically based approach.  There are potential

benefits to each approach, depending on the conditions encountered, and both are tested

as to which performs optimally to produce clear column radiances.  The regression based

approach has the advantage that it can be determined from a sample of clear radiances
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taken shortly after launch and produces cloud cleared radiances that are independent of

any errors in the forward calculation procedure.  This will be particularly useful in the

early stages of operation after launch before the radiative transfer calculations have been

optimized to account for detector characteristics and uncertainties in the forward model.

The physically based approach has the advantage that it can be iterated and take

advantage of the infrared channels as the solution improves with each iteration.

5.2.2 Physically Based Cloud Clearing

An improved physically-based methodology has been developed to account for

multiple cloud formations using the AIRS/AMSU/HSB instruments, for use in the final

product retrieval algorithm.  This methodology is also used as part of the start up

procedure to produce cloud-cleared radiances used in the first product retrieval.  The

methodology to determine ηk  is first presented for a single cloud formation and then

generalized for use with multiple cloud formations.

5.2.3 Single cloud formation with two fields-of-view

For one cloud formation and two fields-of-view, the reconstructed clear-column

radiance for channel i from Equation (5.2.6) is given by

˜ R i,CLR = R i,1 + η1 R i,1 − Ri,2[ ] . (5.2.7)

Given these assumptions, the value of η1 is independent of cloud spectral properties

and has the same value for all channels.  η1 is written in terms of α1 and α2  as

η1 =
α1

α2 − α1 , (5.2.8)

where α1 and α 2  are the cloud fractions in each field-of-view (Chahine, 1974).  It

is not necessary to know α1 or α2  to determine η1.

The determination of η is sequential and is done in a number of passes based on the

latest estimate of the surface and atmospheric parameters.  An expected value of Ri,CLR

for any channel can be used to estimate η according to
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ηi,1
n =

Ri , C L R
n − Ri,1

Ri,1 − Ri,2
, (5.2.9)

where ηi , 1
n  is the n

th
 iteration estimate of η, obtained from channel i, based on the

n
th
 iteration estimate of the cloud-cleared radiance R i,CLR

n .  R i,CLR
n  is obtained by using

the radiative transfer equation to compute the ith channel radiance with the n
th
 pass

estimates of atmospheric and surface parameters.  The general iterative procedure

indexed by n is discussed later.

If the estimated temperature profile is too warm (cold) over coarse layers of the

atmosphere, the estimated cloud-cleared radiances R i,CLR
n  are too high (low), and ηi,1

n  is

too large (small).  In performing HIRS2/MSU retrievals, Susskind et al. (1984) correct

potential biases in the n
th
 iteration coarse-layer temperatures by adjusting computed

brightness temperatures for the infrared channels used to estimate η.  The adjustment is

based on the difference between the observed brightness temperature for an AMSU

channel sensitive to mid-lower tropospheric temperatures and that computed from the n
th

iteration temperature profile.  This in effect adjusted the n
th
 iterative temperature profile

to be consistent with the observations in a single AMSU channel.

The superior sounding capability of AMSU, compared with MSU, is utilized to first

produce an AMSU-only retrieval of atmospheric temperature-moisture profile.  This is

then used as the initial guess to start the retrieval process, and in the first pass estimation

of η1.  The AMSU retrieval is done before the cloud correction because AMSU radiances

are not affected significantly by non-precipitating clouds.  The temperature retrieval

obtained from AMSU has the property that radiances computed from it agree well with

all AMSU channels and is unbiased over coarse layers of the atmosphere, though local

errors still exist.  When used in the start up mode before the first product retrieval, (n=0),

the radiances are calculated based on the microwave product state.  In subsequent passes,

it is ensured that state also agrees with the AMSU radiances.
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Using different IR channels in Equation (5.2.9) results in different estimated values

of ηi,1 due to a combination of local errors in the temperature profile, and channel noise

effects.  Many channels are used to estimate η1 in order to reduce potential errors.  For the

case of a single cloud formation, this is accomplished by simply taking a weighted

average of ηi,1 over a set of cloud filtering channels to get a single value of η1 as done in

Susskind and Reuter (1985a) and Susskind et al.. (1993).  Once a value of η1 is

computed, the cloud-cleared radiances for all channels are reconstructed using Equation

(5.2.7).

If the denominator in Equation (5.2.9) is small, errors in estimating the numerator are

amplified in the determination of η.  Therefore, a large contrast in radiance between the

two fields-of-view is important for cloud-filtering channels.

5.2.4 Channel selection for cloud filtering

Although some previous techniques (Chahine (1974),  Halem et al. (1978), and

Susskind et al. (1993)) used the 15 µm longwave channels for cloud clearing and the

4.3 µm channels for retrievals, the rationale for use of only 15 µm channels for cloud

filtering neglected the effects of solar radiation reflected off cloud tops.  When sunlight is

reflected off the surface and clouds, the scene can exhibit significant contrast in the

4.3 µm region, especially for low clouds.  In addition, cloud effects on radiances can be

of opposite sign at short wavelengths than at long wavelengths.  This change in sign eases

the distinction of cloud effects on the observed radiances from thermal effects of the clear

atmosphere.  Therefore, it is desirable to include 4.3 µm channels in the cloud filtering

set during the day.  Furthermore, it is desirable to use the same methodology for both

cloud filtering and retrieval of geophysical parameters during the day and night.  We

therefore use both 15 µm and 4.3 µm channels to estimate η. The 15 µm and 4.3 µm

cloud-filtering channels are a subset of those used to determine the atmospheric

temperature profile. Window channels are more sensitive to clouds than atmospheric

sounding channels, but are also more sensitive to uncertainties in surface parameters.

Tthe methodology has been improved to include window channels in the determination of

η, weighted to reflect the uncertainty in the clear-column radiances.  The same weighting
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procedure is used for all channels.  The relative weighting of the 15 µm and 4.3 µm

channels in the determination of η is done objectively and differs under daytime and

nighttime conditions as is described later.

5.2.5 Determination of η for a single cloud formation

Figure 5.2.1 is a flow diagram for the cloud-clearing program.

Following Susskind et al. (1993), set

η =
Wi

2 η
i

i

I

∑
Wi

2

i
∑

(5.2.10)

where Wi  is a weight for channel i.  An appropriate value of Wi  account s for

propagated errors in ηi  resulting from instrumental and computational noise.  For

example, channels more sensitive to clouds, with large values of Ri,1 − Ri,2 , receive

larger weight.

Equation (5.2.9) for i channels becomes in matrix form

  
W

v 
R clr

n −
v 
R 1( ) = W

v 
R 1 −

v 
R 2( ) ηn (5.2.11)

where W is an I x I diagonal weight matrix with weight Wii  for channel i,

  

v 
R clr

n −
v 
R 1( ) and

v 
R 1 −

v 
R 2( )  are I x 1 vectors, and ηn  is the unknown.  The standard

weighted least squares solution to this matrix problem is given by

  
ηn =

v 
R 1 −

v 
R 2( )T WT W

v 
R 1 −

v 
R 2( ) 

 
 
 

−1 v 
R 1 −

v 
R 2( )T WT W

v 
R clr

n −
v 
R 1( )

(5.2.12)

and reduces to
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ηn =
Wii

2 Ri,1 − Ri , 2( ) Ri , c l r
n − Ri,1( )

i
∑

Wii
2 Ri,1 − Ri,2( )2

i
∑

=
Wii

2 Ri,1 − Ri,2( )2
i
∑ ηi

n

Wii
2 Ri,1 − Ri,2( )2

i
∑

(5.2.13)

where ηi
n  is given by Equation (5.2.9).  Equation (5.2.13) is analogous to Equation

(5.2.10), but in Equation (5.2.13), the contribution of the difference of radiances in the

two fields-of-view to the channel weight is explicitly taken into account.  Therefore Wi

in this context represents any residual weight factors, such as effects of channel noise.

Susskind et al. (1993) used Equation (5.2.11), including in Wi  the term Θi,1 − Θi,2
2

,

that is roughly proportional to Ri,1 − Ri , 2
2
 for the 15 µm channels they used.
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The above discussion is accurate as long as sources of channel noise are uncorrelated

from channel-to-channel.  Under these conditions, an appropriate value of Wi  is inversely

Average rad 
into 3 FOVs

MW & Strato-IR  ret 
to remove

regression  bias

1st cloud cleared rad
with error est. for  η
and rejection criteria

IR/MW surf ret

MW & Strato-IR 
Temp ret

2nd cloud cleared rad
with error est. for  η
and rejection criteria

Compute 
cloud height

and cloud frctions

Compute 
noise covariance matrix 

Tuning correction

Compute 
noise covariance matrix 

Tuning correction

Compute 
cloud height

and cloud frctions

FIGURE 5.2.1   CLOUD CLEARING FLOW DIAGRAM. NOTE: THE FIRST PRODUCT EXEXUTES

THE  CLOUD-CLEARING MODULE IN HIGHLIGHTED SEGMENTS ONLY WHILE THE FINAL

PRODUCT EXECUTES THE COMPLETE CLOUD-CLEARING PROCESS.
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proportional to sources of noise.  There are two sources of noise in Equation (5.2.11),

instrumental noise and computational noise.  Instrumental noise is random and affects

Ri,1 and Ri,2 .  Computational noise affects Ri,CLR
n  and are correlated channel-to-

channel.  In the case of channel correlated noise, the appropriate equation is

  
ηn =

v 
R 1 −

v 
R 2( )T ˆ M −1 v 

R 1 −
v 
R 2( ) 

 
 
 

−1 v 
R 1 −

v 
R 2( )T ˆ M −1 v 

R CLR
n −

v 
R 1( ) (5.2.14)

where ˆ M  is the channel noise covariance matrix, indicating errors in 
  

v 
R CLR

n −
v 
R 1( ).

The iterative methodology to determine cloud-cleared radiances consists of three

passes to determine ηn (n=1,2,3), using three sets of conditions, to give   
v 
R CLR

n , in which

  
v 
R CLR

n  and hence ηn  become increasingly more accurate in each iteration.  Each pass has

its own ˆ M , reflecting expected errors in Ri,CLR
n −  Ri,1.  The noise covariance matrices

are modeled according to

ˆ M ij
n = Nij +

∂Ri
∂Ts

∂Rj
∂Ts

δTs
n( )2 +

∂Ri
∂ενl

∂Rj
∂ε νm

δεν l

n δενm

n 
 

 
 +

∂Ri
∂ρi

∂R j
∂ρj

δρi δρ j( )2 +
∂Ri

∂T(p)

∂Rj
∂T(p)

δTn(p)( )2 +
∂Ri

∂ln(q)

∂Rj
∂ln(q)

δ ln(q)( )2

(5.2.15)

where N is the observed noise covariance matrix (see section 5.3.8, and equation

5.3.33) and the remaining terms are contributions to errors in the computed value Ri,CLR
n

from errors in estimated surface skin temperature, surface spectral emissivity, surface

spectral bi-directional reflectance of solar radiation, and temperature and moisture profile

respectively.  The partial derivatives are determined empirically by computing the

radiance using the current estimate of each parameter and recomputing it after a small

change in that parameter.  The profile terms are obtained by either shifting the entire

temperature profile by δT ( P ) or multiplying the moisture profile by (1 + δq ( P ) ).  In

Susskind et al. (1998), the uncertainties, such as δTs
n , are specified so as to be indicative
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of the expected errors for that parameter in the nth iteration.  These errors are predicted on

a profile-by-profile basis for each pass by propagating the expected sources of error

through the retrieval process in the manner described in Section 5.4.  A principle source

of retrieval error arises from errors in the reconstructed cloud-cleared radiances.  These

errors propagate into degraded estimates of all the variables shown in Equation (5.2.15).

5.2.6 Multiple Cloud Formations with Multiple Fields-of-view

In order to solve for K cloud formations with unknowns η1 . . .ηK , K+1 fields-of-

view are needed.  A simple relationship between αk  and ηk  does not exist for the case of

multiple cloud formations, nor is the solution η1 . . .ηK  necessarily unique.  For example,

consider a case of only one cloud formation with cloud fractions of 20%, 40%, and 60%

in fields-of-view 1 - 3 respectively.  η1
1( ) = 1, η2

1( ) = 0 and η1
2( ) =0, η2

2( )  = 0.5 are two

solutions to the problem, as are appropriate linear combinations of these solutions, given

by

η1

η2

 
 
  

 
= 1− f( ) η1

1( )

η2
1( )

 

 
 

 

 
 + f

η1
2( )

η2
2( )

 

 
 

 

 
 (5.2.16)

The optimal solution provides the correct cloud-cleared radiances and does so with

the smallest values of η in order to minimize amplification of instrumental noise when

used in Equation (5.2.6).

Determining an optimal set of ηk  is analogous to the determination for a single

cloud formation.  Using a set of I channels to estimate K values of η, Equation (5.2.6) is

expressed as a set of linear equations in matrix form according to

  

˜ R 1,CLR
n − R1,1

˜ R 2,CLR
n − R2,1

M
˜ R I,CLR

n − R I,1

 

 

 
 
 

 

 

 
 
 

=

R1,1 − R1,K+1 R1,1 − R1,K L R1,1 − R1,2

R2,1 − R2,K+1 R2,1 − R2,K L R2,1 − R2,2

M M O M
R I,1 − R I,K+1 R I,1 − R I,K L R I,1 − R I,2

 

 

 
 
 

 

 

 
 
 

η1
n

η2
n

M
ηK

n

 

 

 
 
 

 

 

 
 
 

 (5.2.17)

or
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v 
C n = D 

v 
η n , (5.2.18)

The solution to Equation (5.2.18) is given by

  
v 
η n = DT ˆ M −1 D( )−1

DT ˆ M −1 v 
C n (5.2.19)

where ˆ M  is the channel noise covariance matrix as given in Equation (5.2.15).

Given ηn , ˜ R i,CLR
n  is constructed for all channels according to Equation (5.2.6). ˜ R i,CLR

n

is used as the observation in the subsequent retrieval process.  If the observation in a

channel is not sensitive to the presence of clouds in the field-of-view, it is better to

average the observations in all fields-of-view

˜ R i,CLR
n =

1

K +1
Ri,k

k =1

K + 1
∑ (5.2.20)

This is equivalent to defining separate values of η for channels that do not see

clouds, 
  
v 
η i,CLR

n = −
1

K +1
, and using them to produce ˜ R i,CLR

n  for the appropriate

channels.  Currently, channel i is considered not to be sensitive to clouds if

Ri,1 − R i,k +1 ≤ 3 2 Ni  and it is included in a set of channels expected not to see clouds

given the retrieved cloud height.

The first product retrieval algorithm calls the first part of the composite cloud-

clearing package once, to provide the cloud-cleared radiance for inversion to thermal and

humidity profiles.  The final retrieval algorithm calls the complete composite cloud-

clearing package twice, providing cloud heights and cloud fractions in addition to cloud-

cleared radiances.

5.2.6.1 Contribution of clouds to the retrieval channel noise covariance matrix

The basic retrieval methodology described in Section 5.4 requires a channel noise

covariance matrix M representing channel correlated errors in the terms

˜ R i,CLR − Ri
n( ) and ˜ R j,CLR − Rj

n 
 

 
  where Ri

n
 is the radiance computed for channel i
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based on the n
th
 iterative solution.  The optimal solution for η minimizes the noise in the

cloud-cleared radiances.  The channel noise covariance matrix is the sum of two parts,

resulting from noise in the reconstructed clear column radiances δ ˜ R i  with noise

covariance ˜ M , and noise in the computed radiances δRi
n  due to uncertainty in the

parameters, with noise covariance M.  ˜ M ii = δ˜ R δ˜ R T[ ]ii  is the expected noise covariance

matrix for the channel clear-column radiances.  The noise in ˜ R i,CLR  obtained from

Equation (5.2.6) has two parts, arising from instrumental noise Ni , and from cloud

clearing errors coming from errors in ηk , which may be correlated with each other.

Even if the vector ηk were perfect then

˜ M ii = δ˜ R δ˜ R T[ ]ii = N i
2 1+ ηk

k
∑

 
 
  

 
 

2

+ ηk
2

k
∑

 

 
 

 

 
 ≡ N i

2 A ηk( )[ ]2 (5.2.21)

In general, A ηk( )  is a channel noise amplification factor resulting from

extrapolating cloud contaminated observed radiances to cloud-cleared radiances.

Cloud-cleared radiances for those channels affected by clouds have an additional

error due to errors in η, giving the final result

˜ M ij = δ ˜ R δ ˜ R T[ ]ij
= N ij

2 A ηk( )[ ]2 + DδηδηTDT[ ]ij
 (5.2.22)

and where δηδηT  is the error covariance of η and D is defined in Equation (5.2.18).

If ˆ M , as defined in Equation (5.2.15), is indeed representative of the noise in the

determination of η, then

δηδηT[ ] = D ˆ M −1DT[ ]−1
 (5.2.23)

where D in Equation (5.2.23) refers only to those channels used to determine η.

δηδηT  is therefore based only on observed channel radiance differences in the separate

fields-of-view and the modeled channel noise covariance matrix used to determine η,
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and hence is easily computed for a given profile and substituted in Equations (5.2.22) to

give ˜ M  for channels affected by clouds.

In the special case for which channel i is determined to not "see" the clouds (i.e.,

stratospheric sounding channels or tropospheric sounding channels peaking significantly

above the highest cloud top), radiances in the k fields-of-view are averaged for the cloud-

cleared radiances.  For these channels, the scene appears to be clear and effective values

of ηCLR  are defined for “clear” channels as ηCLR = −1 / ( K+ 1) .  For these channels,

A ηCLR,k( ) =
1

k +1
, which is a noise reducer.  For “clear” channel i,

˜ M ij =
1

k + 1
Nij

2 δ ij  (5.2.24)

where j is any other channel and δ ij  is the Kronecker delta function.

Even if only 2 cloud formations exist, it is better to make use of the characteristics of

radiances in all 9 fields-of-view than to arbitrarily divide the 9 spots into 3 equal area

fields of view as done by Susskind et al. (1998).  There are numerous reasons for this.

Equation (5.2.6) extrapolate 
˜ R i,CLR  from R i,1  with coefficients ηk .  One desires:

 (1) Ri,1 to be as close to ˜ R i,CLR  as possible to minimize extrapolation,

(2) to maximize the contrast between different fields-of-view to have lower values of ηk
and less noise amplification, and

(3) to use the average of many fields-of-view to minimize noise effects.

If, for examples, footprints 1 and 2, 3-7, and 8 and 9 each have roughly equivalent

scenes, it is better to group them accordingly to form the three fields-of-view.

5.2.6.2Selection of Optimal Fields of View

Rather than choose radiances for the warmest field-of-view to be the average of the

three highest radiance valued observations, Na is the average of nearly equivalent

observations to give R i,1 , where Na is variable and scene dependent.  This leaves 9-

Na=Nf other fields of view (when dealing with observations in 9 spots) giving the

equation
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˜ R i = Ri,1  + ηk
k=1

N
f

∑ (R i,1 − R i,9−k+1) = Ri,1  + ηk
k
∑ ∆R i,k  (5.2.25)

It is advantageous to take a linear combination of the remaining Nf fields of view

R i,1 = Uk, ′ k R i, ′ k 
k, ′ k 
∑  (5.2.26)

where U is dimensioned Nf x Nf. U is chosen so as to diagonalize DT ˆ M −1D[ ]
UT(D T ˆ M −1 D)U[ ]

j, ′ j 
= λ j δ j, ′ j  (5.2.27)

The solution in this transformed space becomes

˜ R i = Ri,1  + ηk
k=1

N
f

∑ (R i,1  − R i,9−k+1) = Ri,1 + ηk
k
∑ ∆Ri , k  (5.2.28)

where

  
v 
η = UT v 

η  and   
v 
η = U  

v 
η  .  (5.2.29)

The solution for   
r 
η  is given by

ηj = (∆RCLR
T N−1 ∆RCLR) jj

−1(∆RCLR
T N−1 ∆RCLR) j,1 = λ j

−1(∆RCLR
T N−1 ∆RCLR) j,1

(5.2.30)

where ∆ RCLR  is (Rj, CLR
n −  R j,1 ).  Cloud-cleared radiances are most easily

obtained in the untransformed space using Equations (5.2.30), (5.2.29), and (5.2.25).

If all Nf eigenfunctions of U are used in Equations (5.2.28) and (5.2.30), then the

results would be identical to those in the untransformed space.  The eigenvalues λ j

provide information about the degrees of freedom in the observed radiances.  Significant

eigenvalues correspond to different cloud formations in the scene, while small

eigenvalues arise from various sources of noise such as instrumental noise and non-

homogeneities in the clear portion of the scene.  The solution is stabilized in transformed
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space by keeping only a subset of Ns  eigenvectors, which provide the Ns optimal linear

combinations of observations in untransformed space.

The eigenvalues are representative of signal-to-noise in the solutions.  Typical

eigenvalues for the first cloud formation are the order of 10000 and for the second, the

order of 1000.  Subsequent eigenvalues in cases with a two cloud formations are typically

less than 100.  Eigenvectors with eigenvalues less than 20 are eliminated.

Aside from reducing noise and determining the number of cloud formations from the

data, transforming the fields-of-view provides a better treatment of the estimated noise in

the cloud-cleared radiances because the error in ηj  is uncorrelated with that in η ′ j .  The

contribution to the channel noise covariance matrix arising from instrumental noise

˜ M ij = Nij
1

Na
(1 + ηk )2 + ηk

2

k
∑

k = 1

Ns
∑

 

 
 

 

 
 δ ij + (∆Rik ∆Rjk λk

−1
)
2

k

∑
 

 
 

 

 
 

1 / 2

(5.2.31)

where λk
−1 can be shown to be a statistical estimate of δ ηk δ ηk

T( ) if N ij represents

the true noise covariance error.  Hence, the details of the channel noise covariance matrix

are not needed to compute ˜ M .

The accuracy of λk
−1  is predicted from the subset of Nc  cloud clearing channels.

Calculate the RMS of the radiance residuals as the difference between the cloud cleared

radiance estimate, R i,CLR
n , and the cloud cleared radiance value, ˜ R i,CLR , over the Nc

cloud clearing channels.  The prediction is accurate if this matches  
˜ M iii∑ .  The case

dependent uncertainty in the noise covariance is given by the difference of these two

values

δε2 =
1

 Nc
 (
i = 1

Nc
∑ Ri,CLR

n − ˜ R i)
2 −  

1

 Nc
 ˜ M ii
i = 1

Nc
∑  .  (5.2.32)
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To produce a more accurate estimate of the channel noise covariance matrix, an

additional uncertainty is added to the extrapolation uncertainty estimate,   δ
r 
η , if δε2  is

positive.  The best way to add the uncertainty is to only modify the predicted value of

δ η1 , since higher order δ ηj  terms require more knowledge of the interaction

extrapolation parameters for multiple cloud formations.  Therefore, only δ η1  is

modeified if δε2  is positive, by adding a term ′ δ  η
k

  as follows

′ δ ηk = 0  for k > 1

′ δ ηk
2 =

δε2

S1
2 + 0.012  for k = 1  (5.2.33)

where S1 is the RMS channel contrast in transformed space

S1
2 ≡

1

Nc
 ∆Ri,1( )
i = 1

Nc
∑

2

.  (5.2.34)

The additional factor of 0.01 is to allow for a null space error between the surface

retrieval and the cloud clearing parameter retrieval.  The total error estimate for the cloud

cleared radiances for all the channels is now expressed as

˜ M ij = Nij ⋅ A2δij + ∆R ik ∆R jk(λk
−1 + ′ δ  ηk

2 )[ ]2

k
∑

 

  
 

  

1 / 2

 (5.2.35)

where A is the noise amplification factor shown in the first bracket in Equation

(5.2.31).  The ability to average Na   spots to produce radiances for field of view 1

significantly reduces A.  The use of the truncated transformation matrix U also lowers the

noise amplification factor, as low values of λ
k

which would contribute to large values of

η
k

 have been eliminated.

From Equations (5.2.31) and (5.2.35), it is apparent that increasing Na is desirable.

On the other hand, it is also desirable to maximize contrast between the fields-of-view to

minimize the values of η and extrapolate least from R i1.  The field-of-view containing
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the highest radiance in a select 8 µm cloud filtering window channel is always included

in   
v 
R 1 .  In addition, for each other field-of-view, the standard deviation is evaluated over

all cloud filtering channels of the difference between this radiance and that in field-of-

view 1

σs =
1

Nc
 

R i,1 − R i,s

Nii

 
 
  

 
i=1

Nc

∑
2 

 
 

 

 
 

1 / 2

 (5.2.36)

and select the radiances in fields-of-view to be averaged with R i,1  into R i,1  if σs  <

0.3 or σs  < 0.2 MAX (σs).  If more than three fields-of-view satisfy this criterion, the

three with the lowest standard deviations are selected, so as to maximize Na at 4.  A

special case arises if all eigenvalues λ
k

 are less than 20.  Here, no clouds are present and

set Na = 9, averaging radiances in all 9 spots.

5.2.6.3 Regression Approach to Find ˜ R i, CLR

An alternative to computing ˜ R i,CLR  is to use regression-based relationships between

AMSU observations and clear column radiances for a set of AIRS driver channels.  These

relationships are found shortly after launch by identifying areas where no clouds are

thought to be present in any of the 9 fields-of-view.  Such areas are identified when only

low eigenvalues of (DT ˆ M −1 D) exist [see Equation (5.2.27)] and the values of R
i,CLR
n

computed physically are very close to ˜ R i,CLR .  The regression-based approach depends

on driver channels.  These are channels for which an estimate of the clear column

radiance is obtained from the microwave measurements.  These channels are selected in

the following manner.  For each of 10 atmospheric microwave channels (5-14), the four

AIRS channels with the highest correlation with a particular AMSU channel are selected.

Although only one channel is needed, four are selected to reduce the noise in this crucial

step.  Then angle dependent regression coefficients are generated, based on observations

in the clear cases, to predict each of these 40 AIRS channels from the 10 AMSU
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channels.  The predicted cloud-cleared radiances become the values of ˜ R i,CLR  used in

subsequent inversion of level 2 parameters.
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5.3 First Product

5.3.1 AIRS First Guess Regression Procedure

An eigenvector global regression procedure provides fast and accurate initial guesses

for temperature and moisture profiles as well as surface emissivity.  All independent

AIRS radiances are preprocessed by the cloud-clearing module described in the last

section.  Following the approach of Smith & Woolf (1976), eigenvectors from a

brightness temperature covariance matrix, calculated over some dependent training

ensemble, are used as basis functions to represent the AIRS/AMSU/HSB radiometric

information.  Eigenvectors of covariance matrices are commonly referred to as

Empirical Orthogonal Functions (EOF’s) in the literature, a convention that will be

adopted throughout the remainder of this section.  Because of the large number of

channels measured by AIRS/AMSU/HSB, the eigenvector form of regression is crucial

for exploiting the information content of all channels in a computationally efficient form.

By representing radiometric information in terms of a reduced set of EOF’s (much fewer

in number than the total number of instrument channels) the dimension of the regression

problem is reduced by approximately two orders of magnitude.  Another advantage of

using a reduced set of EOF’s is that the influence of random noise is reduced by

elimination of higher order EOF’s which are dominated by noise structure.  It should be

noted that if all EOF’s are retained as basis functions the eigenvector regression reduces

to the ordinary least squares regression solution in which satellite measurements are used

directly as predictors.  The mathematical derivation of the EOF regression coefficients is

detailed in the following sub-sections.

5.3.2 Generating the Covariance Matrix and Regression Predictors

A training ensemble of temperature, humidity, and ozone profile data are used to

generate brightness temperatures for all AIRS/AMSU/HSB channels.  The deviations of

the brightness temperatures from their sample mean are stored in the matrix ∆ΘTrain, a

matrix of dimensions [nchan x nsamp], where nsamp is the sample size of the training

data set and nchan is the total number of instrument channels.  The brightness
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temperature covariance matrix from which the EOF’s are derived is then generated as

follows:

Θcov =
1

nsamp
∆ΘTrain(∆ΘTrain)

T (5.3.1)

where superscript T denotes matrix transpose and the matrix Θcov is a square matrix

of order nchan.  The diagonal elements of Θcov represent the variance of the respective

channel brightness temperatures while the off diagonal elements represent the covariance

between pairs of channels.  An eigenvector decomposition is performed on the matrix

Θcov giving:

Θcov = ΓΛΓT (5.3.2)

where Γ is the [nchan x nchan] matrix containing the eigenvectors, or EOF’s, of

Θcov in it’s columns.  Λ is the diagonal matrix of eigenvalues, the first eigenvalue being

the first diagonal element, the second eigenvalue the second diagonal element etc.  The

EOF’s are ordered in terms of the amount of the total data variance each explains; the

first explains the most variance and each successive EOF explains progressively less of

the total data variance.  As discussed in the beginning of this section, some subset of the

total number of EOF’s is best for capturing the information content of the radiometric

data while minimizing the effects of random measurement noise.  For the purposes of

notation let m be the optimal number of EOF’s for describing the information content of

the covariance matrix from Equation (5.3.14).  Considering the large number and

interdependent nature of the AIRS/AMSU/HSB weighting functions it is reasonable to

assume that m << nchan, where m represents in some sense the number of independent

pieces of information available from the measurements.  Experiments with

AIRS/AMSU/HSB simulated data have shown m = 40 to be optimal for capturing the

information content of the measurements from these three instruments. Only very small

improvements in retrieval accuracy have been observed when using greater numbers of

eigenvectors.  Once m is determined from experimentation those EOF’s are used as basis

functions to represent the original brightness temperature information in terms of
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expansion coefficients commonly referred to as principal components.  First we express

∆ΘTrain as an expansion of the EOF’s as follows:

  ∆
r 
T Train

j = a1
j ˜ Γ 1 + a2

j ˜ Γ 2 + L+ am
j ˜ Γ m (5.3.3)

where   ∆
r 
T Train

j  is the jth column of matrix ∆ΘTrain and   a1
j,a 2

j ,L,am
j  are the

corresponding m principal components for the jth sample.  In order to solve Equation

(5.3.16) for the individual principal components recall that the EOF’s   
˜ Γ 1, ˜ Γ 2 ,L, ˜ Γ m  are

mutually orthonormal.  That is:
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Initial Regression Guess
using all AIRS channels

Initialize 
L2 parameters:

T,  T s,  qv ,  ql,  O3 

εµ,  εs(ν),  ρs(ν)
to training sample mean

Compute 
principal components

from the EOFs of the training set
and the deviation of Θ from its training mean 

Limb correction 

Compute solution

Update L2 
parameter 

Loop over   
T,  Ts,  qv,  ql,   O3,  εs,  ρs

Is solution < 0 ?

Return

n y

Set flag 
so that  

l2d_guess=l2d_mw

Initial Physical Retrieval
using selected T,  H2O channels 

 For  Ts  and  T  first
and then  qv 

Compute 
minimum variance 

solution

 Compute  kernel 
matrix

for Ts and T or qv

Perform eigenvalue 
decomposition on

 error covariance maxtrix

Interation loop

Update L2 
solution vector

 Is  qv  <  0 ?

Return

n

a. b.

Compute  LS 
regression coefficients 

y

FIGURE 5.3.1  FIRST PRODUCT FLOW DIAGRAM: A) INITIAL REGRESSION AND B) PHYSICAL

RETRIEVAL
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˜ Γ i •  

˜ Γ j=
1   for i = j

0   for i ≠ j
 
 
 

(5.3.4)

where (•) denotes the inner product of two vectors.  Using the condition of

orthonormality and the distributive property of the (•) operator, each individual principal

component is expressed as:

  

a i
j = ∆TTrain

j •  

˜ Γ i      i = 1 ,2, L, m  and

                              j=1,2, L, nsamp
(5.3.5)

5.3.3 Generating the Regression Coefficients

A standard least squares regression technique is used to generate regression

coefficients using an a priori training database such as an operational radiosonde match

file.  The following regression model is used to generate the coefficients:

∆V = CATrain (5.3.6)

where ∆V  is the matrix of deviations of the predictants (temperature, moisture etc.)

from the training sample mean, ATrain is the [m x nsamp] matrix of principal components

calculated using Equation (5.3.5), and C is the [n x m] matrix of regression coefficients

to be solved for where n is the total number of predictants.  More specifically:

  

∆V =

V1
1 − V 1 V1

2 − V 1 L V1
nsamp − V 1

M M M M
Vn

1 − V n Vn
2 − V n L Vn

nsamp − V n

 

 

 
 
 
 

 

 

 
 
 
 

(5.3.7)

and,

  

ATrain =
a1

1 a1
2 L a1

nsamp

M M M M
a m

1 a m
2 L am

nsamp

 

 

 
 
 
 

 

 

 
 
 
 

(5.3.8)

where n = number of predictants (i.e. the number of temperature, moisture, and/or

emissivity/reflectivity points), nsamp = number of samples in the training set, m =

number of principal components used and bars indicate averages over the training sample

set.
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The least squares regression solution of Equation (5.3.6) is:

C = ∆VATrain
T (ATrainATrain

T )−1

(5.3.9)

where the T superscript denotes matrix transpose, and the -1 superscript denotes
matrix inversion.

5.3.4 Applying the Coefficients to Independent Data

Once the coefficient matrix, C, is calculated from equation (5.3.9) the coefficients

may be applied to independent data using equation (5.3.6).  The matrix defined in

equation (5.3.20) would now contain deviations of the independent data from the training

sample mean.  Mathematically, the application process is:

V = V + CAobs (5.3.10)

where V is the [n x nobs] matrix of retrievals, V  the training vector from equation

(5.3.7), C is the [n x m] matrix of regression coefficients from equation (5.3.9),  and Aobs

is the [m x nobs] matrix of principal components calculated from the level 1B

observations. Aobs  is generated using equation (5.3.5) where ∆ΘTrain is replaced with

∆Θobs, the matrix of deviations of observed brightness temperatures from the training

mean.

To account for off-nadir view positions the principal components in equation

(5.3.10) are adjusted to nadir.   This is accomplished by generating a priori coefficients to

predict nadir principal components from off-nadir principal components (i.e. limb

adjustment).  Limb adjustment is used only in the regression step.  The physical retrieval

algorithms are applied to radiances at the given view angle.

5.3.5 Minimum Variance Physical Retrieval

Given a set of radiances, the objective of a physical retrieval algorithm is to find a

realistic solution of geophysical parameters that will be consistent with those radiances.

The derivation begins with linearizing the radiative transfer equations (RTE) for

microwave and infrared about some a priori estimate.  This is accomplished by
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expressing brightness temperature or radiance (Rυ
c ) in equations (4.1.2) and (4.2.1) as a

function of the regression guess using a first order Taylor expansion such that:

Rυ
c = Rυ

0 +
∂Rυ

∂Vk

(Vk -  Vk
0)

k = 1

N

∑ (5.3.11)

where R 0
υ is the total integrated radiance for frequency υ computed from the

regression solution and the RTE, Vk and Vk
0  are the kth elements of the solution and

regression first guess geophysical parameter vectors, ∂Rν / ∂Vk  is the incremental change

of the radiance with respect to a incremental change in a particular geophysical parameter

(e.g. Vk= temperature at 50 mb), and N is the number of geophysical parameters.  The

value of ∂Rν / ∂Vk is computed in a manner similar to Eyre (1989a) by differentiating the

numerical quadrature form of the RTE with respect to the geophysical parameters (see

section “Computation of the Kernel Matrix”). Currently the geophysical parameters

solved in the physical retrieval include surface and atmospheric temperature and

moisture. The above equation is re-expressed in matrix notation as,

  
r 
R =

r 
R 0 + A(

r 
V -

r 
V 0) (5.3.12)

where   
r 
R  represents the vector of cloud-cleared satellite observations for all retrieval

channels,   
r 
R 0  represents the vector of radiances computed from the regression first guess

for all retrieval channels,   
r 
V  and   

r 
V 0  represent the solution and regression first guess

geophysical parameter vectors, and A, commonly referred to as the kernel matrix,

contains the partial derivatives of radiance with respect to each of the individual

geophysical parameters and for each of the retrieval channels.  A minimum variance

solution for   
r 
V  is employed in the retrieval process.  Minimum variance has been used in

the NOAA TOVS operational retrieval system since 1988 (Fleming et. al., 1986;

Goldberg et. al., 1986).  There are an infinite number of ambient atmospheric states that

will satisfy the RTE to within the system noise (i.e. instrumental + cloud-clearing +

transmittance).  The minimum variance solution uses a priori constraints, in the form of a

regression estimate and covariance matrix of regression errors, to produce realistic
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atmospheric profile solutions minimizing the average squared-error over an ensemble.

The iterative matrix form of the solution (Rodgers, 1976):

  
r 
V n+1 =

r 
V 0 + (An

TN −1An +S−1)− 1An
TN−1 (

r 
R -

r 
R n ) - An (

r 
V 0 −

r 
V n ){ } (5.3.13)

where   
r 
V n+1  is the n+1 iterative estimate of the retrieved temperature or moisture

profile,   
r 
V n is the n-th iterative estimate of the retrieved profile,  

r 
V 0  is the initial guess

profile of temperature or water vapor mixing ratio,   
r 
R is the vector of satellite observed

radiances,   
r 
R n  is the corresponding vector of radiances computed from the most recent

iterative solution,  An is the kernel computed from the most recent  iterative solution, N is

the estimated radiance (observation) noise covariance matrix, and S is the estimate of the

background error covariance matrix between the truth and the retrieval estimate.

Superscripts T and -1 denote matrix transpose and matrix inversion, respectively.

Temperature, surface temperature, and water vapor are retrieved separately rather

than simultaneously with the temperature retrievals preceding the water vapor retrieval.

The temperature profile is retrieved first using channels selected from the 15µm and

4.3µm bands that are relatively unaffected by water vapor.  By first improving the

temperature retrieval, the subsequent H2O retrieval will be more accurate because the

temperature component of the signal in the water vapor channels will be better accounted

for.  Both retrieval steps can be iterated, however experiments with simulated data have

shown that often the initial guess departure from the truth is in the linear regime such that

only one iteration is required.

5.3.6 Expressing the Retrieval Solution in more Computationally Efficient
Form

The retrieval solution in equation (5.3.13) can be expressed in a more

computationally efficient form using eigenvector methods.  Because S in equation

(5.3.13) is a real symmetric matrix it may be written:

S = ΓΛΓ T
(5.3.14)
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where Γ is an [n x n] orthonormal matrix, Λ is an [n x n] diagonal matrix, and

superscript T denotes matrix transpose.  Substituting equation (5.3.14) into equation

(5.3.13) and making use of the properties of eigenvectors it is easy to show that equation

(5.3.13) can be written in the following equivalent form,

  
∆

r 
V = Γ ΓTAn

TN-1A nΓ + Λ-1( )−1
ΓTAn

TN -1 ∆
r 
R - An

r 
V 0 −

r 
V n( ){ } (5.3.15)

The [n x n] matrix Γ contains the n orthonormal ‘eigenvectors’ of S in it’s columns

and the diagonal matrix Λ contains the n ordered ‘eigenvalues’ of S.  More specifically

  

Λ =

λ1 0 L 0

0 λ2 O M
M O O 0

0 L 0 λn

 

 

 
 

 

 

 
 
   and   

  

Γ =

γ1
1

γ 2
1

M
γ n

1

Γ1

{

γ1
2

γ 2
2

M
γ n

2

Γ2

{

L

γ1
n

γ 2
n

M
γ n

n

Γn
{

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(5.3.16)

where [Γ1, Γ2, ..., Γn] are the n eigenvectors of S and [λ1, λ2, ... , λn] are the

corresponding eigenvalues.

The dimensions of the matrix to be inverted in equation (5.3.15) is reduced by

truncating the matrices of eigenvectors and eigenvalues.  If we retain m of the n

eigenvectors ( m  < n ) then equation (5.3.15) is rewritten:

  
∆

r 
V = ˜ Γ ˜ Γ TAn

TN-1A n
˜ Γ + ω ˜ Λ -1( )−1 ˜ Γ TAn

TN-1 ∆
r 
R - An

r 
V 0 −

r 
V n( ){ } (5.3.17)

where ω  is a tuning  parameter, and the definition of ω ˜ Λ −1 and ˜ Γ  are as follows:

  

ω ˜ Λ −1 =

ω / λ1 0 0 L 0

0 ω / λ2 0 L 0

0 0 ω /λ 3 O M
M O O O 0

0 L 0 0 ω /λm

 

 

 
 
 
 

 

 

 
 
 
 

 and

  

˜ Γ =

γ1
1

γ2
1

M
γ n

1

Γ1
{

γ1
2

γ2
2

M
γ n

2

Γ2
{

L

γ1
m

γ2
m

M
γ n

m

Γm
{

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(5.3.18)
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Notice that the dimension of the matrix to be inverted in equation (5.3.17) is [m x m]

compared to the larger [n x n] matrix in equation (5.3.15).  In addition to reducing the

number of floating point operations, truncating the eigenvectors may also filter out

unwanted noise in the retrieval process by excluding higher order terms containing

spurious information.

Settings for the tuning parameter, γ, and the number of eigenvectors retained, m, are

different for water vapor and temperature retrievals.  Experimentally determined values

for (ω , m) are currently set to (1.5, 15) for temperature, and (60, 15) for water vapor.

5.3.7 Computation of the Kernel matrix

The elements of the An matrix in Equation (5.3.17) are derived for infrared and

microwave channels using a quadrature form of equations (4.2.1) and (4.1.2).  As

discussed, the elements of An are derivatives of radiance (brightness temperature for

microwave) with respect to individual geophysical parameters (e.g. 50 mb temperature,

500 mb water vapor mixing ratio, surface temperature) from the most recent iterative

solution.  We begin by writing equations (4.2.1) and (4.1.2) in quadrature form using the

trapezoidal rule of integration.  For the IR region the quadrature form of equation (4.2.1)

is,

Rν
c = ενBν Ts( )τνs +

1

2
Bν T(pj)( ) + Bν T(p j - 1)( )( ) τν(p j - 1) − τν(p j){ }

j = 1

J
∑

+ρνBν Tsun( )τνs
2 cosθ

(5.3.19)

where J represents the number of discrete pressure levels of the fast transmittance

model, pj is the pressure at the jth pressure level and all other quantities are as defined in

equation (4.2.1).  Similarly for the MW region of the spectrum equation (4.1.2) is

expressed in equivalent quadrature form,

Rν
c = ενTsτνs +

1

2
T(p j) + T(pj - 1)( ) 

j = 1

J
∑ τν(p j - 1) − τν(p j) + (1 − εν)(τν

* (p j) − τν
* (pj - 1)){ }

(5.3.20)
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where τν
* (p j) = τν

2 (ps)
τν(p j ).  Equation (5.3.20) can be simplified by using notation

for effective transmittances, combining the upwelling and downwelling microwave

components of radiance into a single term.  The form of the simplified equation is

Rν
c = Ts˜ τ νs +

1

2
T(pj) + T(pj - 1)( ) 

j = 1

J
∑ ˜ τ ν(p j - 1) − ˜ τ ν(p j){ }

(5.3.21)

where ˜ τ  indicates the effective transmittance and is defined,

˜ τ ν(pk) = 1− 1 − εν( ) τ ν(ps)
τν(pk )

 
 

 
 

2 

 
 

 

 
 ⋅ τν(p k) (5.3.22)

Taking the derivative of equations (5.3.19) and (5.3.21), both with respect to

temperature and water vapor mixing ratio, gives the elements of An.

Making the assumption that transmittance is independent of temperature the

temperature elements of An for infrared channels are defined as,

An
ij =

dRi
c

dT j
=

1
2

dB j

dTj
2 − τj − τ j+1{ }   for j = 1

1
2

dB j

dTj
τ j-1 − τ j+1{ }      for 1 <  j <  J

1
2

dB j

dTj
τ j-1 − τ j{ }         for j =  J

εs
dBs

dTs
τs                    for surface skin term

 

 

 
 
  

 

 
 
 
 

(5.3.23)

where J is the number of atmospheric levels and j = J corresponds to the lowest

atmospheric level, τs is the atmospheric transmittance from the surface to space, τk  is the

atmospheric transmittance from the jth atmospheric pressure level to space, εs is the

surface spectral emissivity, and dB/ dTk  is the derivative of the Planck function

evaluated at channel i and atmospheric temperature Tk.  Similarly for the microwave

region the definition of the temperature elements of An are as follows,
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An
ij =

dRi
c

dTj
=

1
2 2˜ τ 0 − ˜ τ j − ˜ τ j+1{ }  for j =  1

1
2 ˜ τ j-1 − ˜ τ j+1{ }         for 1<j <  J

1
2 ˜ τ j-1 − ˜ τ j{ }              for j = J

˜ τ s                                for surface skin term

 

 

 
 

 

 
 

(5.3.24)

where the effective transmittance, ˜ τ , is as defined above.

The water vapor elements of the An matrix for IR channels are defined as follows,

An
ij =

dRi
c

dχ j
= εsBs + 2ρυBTsunτs cosθ −

(BJ−1 + BJ)

2
 
 

 
 

dτs
dχj

+
(Bk+1 − Bk-1 )

2k=1

J −1
∑

dτk
dχ j

(5.3.25)

where BTsun is the Planck function evaluated for channel i at the temperature of the

sun, Bk is the Planck function evaluated for channel i at the first guess level temperature

Tk, θ  is the solar zenith angle, ρυ is the surface spectral reflectivity for channel i, χ
k

is

the initial guess mixing ratio at level k, and all other terms are as defined in equations

(5.3.22) and (5.3.23).  Assuming an isothermal atmosphere above the uppermost pressure

level the definition of the water vapor elements of An in the microwave are as follows,

An
ij =

dRυ
c

dχj
= Ts − 1

2 TJ + TJ - 1( )[ ] d˜ τ s
dχj

+ T1 ⋅
d˜ τ 0
dχj

+
1

2
Tk +1 − Tk -1( ) 

k = 1

J
∑

d˜ τ k
dχj

(5.3.26)

The derivative terms in equation (5.3.26) are evaluated using the definition of

effective transmittance from equation (5.3.22),

d˜ τ k
dχj

=
d

dχ j
τk − (1− ε)

τs2
τk

 

  
 

  (5.3.27)

which after some manipulation reduces to the following form,

d˜ τ k
dχj

=
dτk
dχ j

+ (1 − ε)
dτk
dχj

⋅
τs
τk

− 2 ⋅
dτs
dχ j

 

 
 

 

 
 

τs
τk (5.3.28)
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The derivative of transmittance with respect to water vapor is given by:

  

dτk
dχj

= τk
dlnτk

dχj
= τk

dlnτk
dqk

dqk
dχj

(5.3.29)

where qk, the precipitable water from the space to pressure level k, is calculated by:

qk = 1
2g χn + χn-1( )

n=1

k
∑ pn − pn-1( ) (5.3.30)

the derivative of precipitable water is given by:

dqk
dχj

=

( 1 / 2 g )pj+1 − pj−1( )  for  j <  k

(1 /2g)pj − pj−1( )      for  j =  k

0                                  for  j >  k

 

 
  

 
 
 

(5.3.31)

and the derivative of the natural log of transmittance with respect to precipitable water
is:

  
τk

dlnτk
dqk

= τk
ln(τk-1) − ln(τk )

qk-1 −  qk
(5.3.32)

 [Note:  τ0 ≡ 1 in the calculation of the above derivatives.]

5.3.8 The Observation Noise Covariance Matrix N

The observation noise covariance matrix, N, is nominally a diagonal matrix whose

non-zero elements (the diagonal elements) represent the observation noise.  In the case of

a clear AMSU field of view the diagonal terms for AIRS is 1/9 the variance of the AIRS

instrumental noise for each of the retrieval channels, since all 3 x 3 AIRS footprints

within an AMSU footprint are averaged.  Thus N has the form:

  

N =

σ1
2 0 L 0

0 σ2
2 L 0

M M O 0

0 0 0 σn
2

 

 

 
 
 

 

 

 
 
 

(5.3.33)

The diagonal values, [  σ1
2 ,σ2

2 ,L,σn
2 ], represent the noise of the n retrieval channels,

and all off diagonal elements (i.e. all interchannel covariances) are assumed to be zero.

Operationally N will include the total system noise and may include off diagonal

elements. The total system noise for each channel is due to the combined effects of
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measurement noise, cloud-clearing extrapolation (which is output from the cloud-clearing

algorithm), forward model inaccuracies, and calibration error.

5.3.9 The Thermal and Moisture Covariance Matrix S

The retrieval parameter covariance matrix, denoted by S in the previous

mathematical description of the physical retrieval, represents the expected error of the

background field.  As discussed above, a background field is generated from a regression

scheme using a large training data base to estimate geophysical quantities from principal

components derived from AIRS/AMSU/HSB brightness temperature observations.  The

same training data is used to estimate the magnitude of expected background errors when

the regression coefficients are applied to independent data.  The coefficients, matrix C

from equation (5.3.22), are applied back to the dependent training data as follows:

∆ ˜ V = C∆T (5.3.34)

where ∆ ˜ V  is the regression retrieval of the dependent geophysical training data

∆Vin equation (5.3.7).  The covariance matrix, S, is then calculated as follows:

S =
1

m
EET , where E = ∆V - ∆˜ V (5.3.35)

where S is an [n x n] matrix whose diagonal elements represent the expected

background variance of each of the predictants, and whose off diagonal elements

represent expected interlevel covariances amongst the various predictants.
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5.4 Final Product

5.4.1 Introduction

To satisfy the science requirements of NASA’s Earth Science Enterprise, a final

adjustment is made to the first product based on the difference between calculated and

cloud-cleared radiances.  It is here that the cloud parameters, and the research products

(not described in this document) are calculated.

When solving for a set of geophysical parameters, it is desirable to be able to choose

an appropriate set of parameters to solve for and select channels that are both sensitive to

those parameters and relatively insensitive to other parameters.  In general, channels will

be affected by more than one type of parameter.  For example, channels with radiances

sensitive to the water vapor or ozone distribution are also sensitive to the temperature

profile and often to the surface skin temperature.  Our approach is to solve sequentially

for the surface parameters, temperature profile, water vapor profile, and ozone profile in

that order.  In this approach, variables already solved for, used in conjunction with first

guess variables, are kept fixed when solving for the next set of variables.  Table 5.4.1 lists

the variables solved for and the number of channels used in each step.  The above order is

chosen because channels can be selected for a given step that are relatively insensitive to

variables to be solved for subsequently.

The iterative solution to the problem contains equations that are of the form of

equation (5.3.13).  However, the final product methodology solves for updates to

coefficients of functions of temperature, moisture, etc., rather than updates to the

geophysical parameters themselves.  Therefore, the terms in the equation have a very

different meaning.  For this reason, a different notation is used so as not to confuse the

reader.  For example, in place of A in the analog of equation (5.3.13), which refers to the

derivative of the radiance with respect to changes in a geophysical parameter, the

sensitivity of the radiances to changes in the coefficients of the expansion functions, S, is

used.
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A total of 278 AIRS channels, 15 AMSU A channels, and 4 HSB channels are

selected for use in the AIRS/AMSU/HSB retrieval algorithm.  Some of the surface

parameter sounding channels are also used in the water vapor or temperature profile

retrievals.  Therefore, the total number of channels is less than the sum of the channels in

column 2.  Likewise, the water vapor solved for in the ground temperature retrieval is

subsequently updated in the water vapor profile retrieval step.  The 297 channels are used

to solve for 42 variables.

The general AIRS/AMSU/HSB retrieval algorithm does not require any field-of-

view to be cloud-free (Susskind et al., 1996).  The algorithm used in the final product

retrieval consists of the following main steps: (0) Obtain an initial guess for the

temperature, moisture, and ozone profiles.  (1) Derive a first estimate of the cloud cleared

radiances and channel noise covariance matrix. (2) Retrieve surface parameters.  If

necessary, the first guess and cloud-cleared radiances may be improved at this point and

the surface retrieval may be repeated.  This loop ends the basic startup procedure.  (3)

Retrieve temperature profile.  (4) Retrieve water vapor profile.  (5) Retrieve ozone

profile.  (6) Produce final cloud cleared radiance estimates.  Repeat (2) - (3) starting with

updated cloud cleared radiances and water vapor and ozone profile.  The general

approach to solve for the parameters in steps (2) - (5) is in the form of iterative

constrained least squares solutions, one for each set of variables to be solved for.  The

form of the equations to be solved is identical for each of the four steps.  More details

about the steps in the final product retrieval algorithms are given below.
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Steps in the AIRS Final Product Algorithm

1. Obtain an initial guess which agrees with AMSU and HSB radiances.  This is
obtained from the first product physical retrieval, followed by a temperature profile
retrieval using AMSU A radiances and AIRS radiances for channels sounding
above the clouds, sequentially followed by a water vapor retrieval using HSB
radiances.

2. Determine an initial ηk
1  from equations (5.2.30) and (5.2.29), using the initial guess

parameters.  Allow a maximum of two η’s.  Also produce the retrieval noise

covariance M1 as described later.

3. Perform a start up surface parameter retrieval using ˆ R i
1 obtained from equation

(5.2.20).  All channels used in this step are sensitive to clouds, so there is no need to
retrieve cloud height.

4. Produce an improved AMSU temperature profile retrieval, using the retrieved

valueTs
1, and radiances in AMSU channels and a set of AIRS stratospheric

sounding channels which do not see the clouds.

      Variables Channels                 Frequencies
Ground Temperature Retrieval

  Ts , ∆ln W , 8 IR spectral emissivity
functions, 3 IR spectral bi-directional
reflectance functions, MW spectral

emissivities

23
35
6

758 →  1235 cm-1

2170 →  2669 cm-1

23.8–150 GHz

Temperature Profile Retrieval
14 layer temperature-
functions (trapezoids)

103
33
12

651 →  768 cm-1

2228 →  2501 cm-1

50.3 →  57.29  GHz
Water Vapor Profile Retrieval

8 layer column density functions 69
54

790 →  2650 cm-1

150-183.31 GHz
Ozone Profile Retrieval

5 layer column density functions 23 1001 →  1069 cm-1

Total:  42 variables  297 channels (AIRS + AMSU)

TABLE  5.4.1.  VARIABLES AND CHANNELS
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5. Determine updated ηk
2  taking advantage of the refined parameters. Allow a

maximum of three η’s.  Also determine cloud parameters to decide which channels

do not see clouds.  This information is used to produce ˆ R i
2  as well as the retrieval

channel noise covariance matrix M2 . This is the end of start up system.

6-9 Use ˆ R i
2  and M2  to refine the surface parameters, temperature profile, humidity

profile, and ozone profile.  These steps give the first pass retrieved parameters.

10. Using the first pass retrieved parameters, determine refined ηk
3 , allowing up to 4

values of η and final cloud parameters.

11. Produce the final clear column radiances ˆ R i
3, which is a product of the system, and

M3 .
12. Perform a test AMSU temperature profile retrieval for rejection test.

13. Repeat steps 6-7 using ˆ R i
3 and M3 to obtain the final surface and temperature

profile products, using the first pass retrieved water vapor and ozone parameters
and first guess temperature profile as the initial guess.

14 Apply rejection tests.  If solution is not accepted, return the microwave product as
the final solution and set an appropriate flag.

5.4.2 General Iterative Least Squares Solution

An iterative approach is used to linearize the radiative transfer equation about the n
th

iterative parameters   Xl
n + 1.  The iterative retrieval process described here is different

from the use of different passes in the determination of η.  The values of ˆ R i  used in the

iterative retrieval loop are held fixed in a given pass.  The n+1
th iterative estimate of   Xl

is expanded according to

  
Xl

n + 1 = Xl
n + Flj

j =1

J
∑ ∆Aj

n = Xl
o + Flj

j = 1

J
∑ A j

n
(5.4.1)

where the columns of F represent a set of functions,   X l
o  is the initial guess, and A j

n

are corresponding coefficients given by

Aj
n = A j

n − 1 + ∆Aj
n (5.4.2)
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which together with   Xl
o

 determine the solution.  A solution is found that attempts to

minimize the residuals ∆Θi
n

, weighted inversely with respect to expected noise levels,

for the channels used to determine Aj .  The residual for channel i is defined by

∆Θi
n = ˆ R i − Ri

n( ) dB

dT
 
 

 
 Θi

n

−1
(5.4.3)

where ˆ R i  is the reconstructed clear column radiance, R i
n  is the radiance computed

from the nth iterative parameters, and Θi
n  is the brightness temperature computed from

the n
th
 iteration parameters.  The n

th
 iteration residual for channel i is attributed to errors

in the coefficients, δA j
n , and to noise effects, i.e.,

∆Θi
n = Sij

n δAj
n + ˜ Θ i

j
∑  (5.4.4)

where Sij  is an element of the sensitivity matrix or Jacobian given by

Sij
n =

∂R i
n

∂A j
n

dB

dT
 
 

 
 Θi

n

−1

(5.4.5)

and the noise factor ˜ Θ i  for a given case has two parts: errors in observed cloud-

cleared radiances δ ˆ Θ i , which are affected by instrumental noise and cloud clearing

errors, and computational noise δΘi
c .

In simulations, a perfect knowledge of physics is assumed, i.e., all the variables are

known exactly,  the exact noise free radiances are computed.  Nevertheless, the

transmittances depend on the variables to be solved for.  Therefore, computational noise

exists.  Computational noise, arising from errors such as too low (high) an estimate of

atmospheric water vapor, produce noise that is correlated between channels.

Instrumental noise is uncorrelated from channel-to-channel but cloud-clearing errors are

correlated from channel-to-channel.  Each retrieval step uses an appropriate noise

covariance matrix
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Mij = ( ˆ M ij + ˜ M ij)
dBi
dT

 
 

 
 Θi

−1 dBj
dT

 
 
  

 
 
Θ j

−1
 (5.4.6)

where ˆ M  is defined in Equation (5.2.30) and ˜ M  is discussed later, with values

which depend on the pass.  Writing W as M−1 for simplicity.

A general form of the solution to this problem is given by

∆An = ′ S n W Sn + Hn[ ]−1
′ S n W∆Θn = M n∆Θn (5.4.7)

where ∆An  and ∆Θnare column vectors of the updates to the coefficients and of the

residuals, respectively, and Hn  is a stabilizing or damping matrix.

Hanel et al. (1992) and Rodgers (1976) have reviewed several methods of

constraining the ill-conditioned inverse problem.  In the minimum variance approach

(Rodgers, 1976), H is taken to be the inverse of the a priori error covariance.  If the

statistics of both the measurement and a priori are Gaussian, the maximum likelihood

solution is obtained.  If the a priori  covariance is taken to be H = γI , the maximum

entropy solution is obtained.  Other forms of H include the first or second derivative

formulations (Twomey, 1963) that force a smoothness constraint on the solution.  The

solution can also be constrained by the relaxation method (Chahine, 1968) and by the

Backus and Gilbert (1970) method.

The minimum variance and maximum likelihood solutions are often considered to be

"optimal."  However, if the a priori error covariance is not known or estimated

incorrectly, the solution is sub-optimal.  If the a priori errors are underestimated, the

solution is overconstrained.  Potentially, this creates biases in the retrievals.  The biases

mask small trends in the retrieved data that scientifically important.  The approach

described here attempts to keep the effects of instrument noise at a tolerable level without

assumptions regarding the a priori  data error covariance.
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5.4.3 Transformation of Variables

As a consequence of stabilizing the potentially ill-conditioned solution, the addition

of H also has the effect of damping the information content (reducing ∆A for all modes).

The variables are transformed to apply a constraint such that the well-determined

components of the variables are solved for without appreciable damping.  If a different

set of functions are chosen which are linear combinations of original functions, i.e.,

G = FU (5.4.8)

where U is a unitary transformation (U ′ U = 1), and expand the solution in the same

way as in Eq. 5.4.1 with unknowns ∆Bn , this obtains the matrix form

Xn+1 = Xn + G∆Bn = Xn + FU∆Bn = Xn + F∆An (5.4.9)

The objective is to find a transformation matrix U with desirable properties.  In

the new basis set, the transformed Jacobian is given by

Tn =
∂R

∂Bn
dB

dT
 
 

 
 Θ

−1
= SnU

(5.4.10)

The constrained solution, as given by Eq. 5.4.7, in terms of this new set of functions

is given by

∆Bn = T' n W Tn + H
 
 
  

 

−1
T' n W ∆Θn − δΘn −1( ) = ′ U ∆An (5.4.11)

The term δΘn − 1 is an iterative background correction term that is zero in the first

iteration (it is discussed further below). Un  is selected such that

′ T n Wn Tn = ′ U ′ S  W S U is diagonal with real non-negative eigenvalues λj
n

.  The

inverse of each eigenvalue is the variance in that eigenmode.  The total variance is the

trace of the ′ S WS( )−1 or, equivalently, the trace of ′ U ′ S WSU( )−1.  The unconstrained

solution (H=0), with no background correction δΘn −1 = 0( ) , is then given by
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∆Bj
n 0( ) = λ j

n( )−1
Tkj

n

k,i
∑ Wk,i ∆Θi

n = λn( )
j

−1
m j

n ∆Θn

(5.4.12)

where m j
n

 is the vector corresponding to the jth row of ′ T W .  In general, the ill-

conditioned cases arise from those components of G having low information content and

small eigenvalues (high variance), indicating that those components are not well

determined from the observations alone and need damping.  Components with large

eigenvalues are quite well determined and require little or no damping to achieve a stable

solution.  If H is chosen to be diagonal with values ∆λ , the constrained solution with no

background correction term is given by

∆Bj
n ∆λn( ) = λj

n + ∆λ j
n 

 
 
 

−1
m j

n ∆Θn (5.4.13)

The coefficients ∆Bj
n ∆λ j

n( )  are damped from the unconstrained coefficients

∆Bj
n 0( )  by

∆Bj
n ∆λj

n 
 

 
 =

λ j
n

λ j
n + ∆λj

n ∆Bj
n 0( ) = Φ j

n ∆Bj
n 0( )

 (5.4.14)

where Φ j can be thought of as a filter or damping function.  This formulation is the

same as the maximum entropy solution, applied in transformed space, if ∆λ  is set equal

to a constant.  However, instead of using a single constant for every ∆λ j
n , a different

value is computed for each eigenfunction.  For well-determined eigenmodes, ∆λ  is set

equal to 0, giving no weight to the a priori.  For modes that are not well determined by

the measurements, ∆λ  is determined in such a way as to limit the propagation of

instrument noise to a pre-specified amount.  The determination of ∆λ j
n  is discussed in

detail in the next section.
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5.4.4 Application of a Constraint

The residual ∆Θi
n

 can be thought of as having both a signal and a noise component,

i.e.,

∆Θi
n = ∆Θi

signal + ˜ Θ i  (5.4.15)

The component of ∆Bj  that arises from the propagation of channel noise, ˜ Θ i , is

given by

δ˜ B j
n λj

n 
 

 
 = λj

n + ∆λ j
n 

 
 
 

−1
′ T n W[ ] ˜ Θ  .  (5.4.16)

A statistical estimate of δ˜ B j
n  over an ensemble of profiles can be obtained by

δ˜ B j
n = δ˜ B n δ˜ B n

′ 
  

 
  

jj

1/ 2
= λ j

n + ∆λ j
n 

 
 
 
−1

′ T  W ˜ Θ ˜ ′ Θ ′ W  T[ ] jj

1/ 2
=

λ j
n 

 
 
 
1 / 2

λ j
n + ∆λ j

n

(5.4.17)

because ˜ Θ ̃  ′ Θ = M = W−1.  This formulation of δ˜ ∆  is similar to that given by

Rodgers (1990).  If ∆λ j
n  were zero, δ˜ B j

n  becomes large if λ j
n  is small. ∆λ j

n  is selected

such that δ˜ B j
n  is less than or equal to a threshold value.  If δ˜ B j

n  is allowed to be no more

than δB
MAX

, then ∆λ j  is set to zero if λ j ≥ δBMAX
−2  and ∆ λj =

λ j
1 / 2 − δBMAX λ j

δBMAX

otherwise.  For example, if δBMAX   = 0.5, ∆λ j  = 0 for λ j ≥ 4 , and if δBMAX  = 1, ∆λ j

= 0 for λ j ≥ 1, corresponding to less damping.  Constraints are only applied to those

eigenfunctions with lower information content than the critical value corresponding to

δBMAX .  The value of δBMAX  has been determined empirically for each type of

retrieval.  The AMSU temperature retrieval step behaves best with ∆BMAX = 1.0 , the

AIRS surface temperature retrieval step with a value of ∆BMAX = 0.35, the AIRS
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temperature and moisture profile retrieval steps with ∆BMAX = 1.2 and 1 . 0,

respectively, and the ozone profile retrieval with ∆BMAX = 4 .  The computation of all

matrix elements shown above, including λ  and ∆λ , is done in each iteration.

5.4.5 Formulation of the background term

The need for an iterative process arises because the radiative transfer equation is not

linear.  In every iteration, Θi
n , Sn , Un  and λn  are each recomputed.  If the solutions were

completely linear, and no damping is applied then

∆Θn+1 0( ) ≅ ∆Θn − Sn U n ∆Bn 0( ) (5.4.18)

and ∆Bn+1 0( )  is zero because ∆Bn 0( ) already minimizes the residuals.

Eq. 5.4.18 is not exact, because both Θn+1 0( )  is not given exactly by

Θn + SnUn∆Bn , and ∆Bj
n ≠ ∆B j

n 0( ).  As a result of applying ∆Bj
n  rather than ∆Bj

n 0( ) ,

which minimizes the radiance residuals

∆Θn +1 ≈ ∆Θn + 1 0( ) + SnUn ∆Bn 0( ) − ∆Bn[ ] = ∆Θn +1 0( ) + δΘ n
(5.4.19)

In Eq. 5.4.19, ∆Θn +1 0( )  represents the portion of ∆Θn +1 that is due to effects of

non-linearity on the solution, while δΘn  represents the residual portion of ∆Θn +1 due to

the effects of damping in iteration n.  The second term is zero for undamped modes and

increases in significance with increased damping.  This term is also zero for all modes in

the first iteration.  It is desirable to include the effects of non-linearity in the iterative

procedure used in the determination of ∆Bn .  Therefore, the background term to be used

in Eq. (5.4.11) is given by

δΘn = Sn Un ∆Bn 0( ) − ∆Bn[ ]
and we solve for ∆Bj

n+1   according to
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∆Bj
n + 1 = λ j

n + 1 + ∆ λj
n +1 

 
 
 

−1
′ U n +1 ′ S n + 1 Wn +1 ∆Θn +1 − δ Θn[ ]

= Φn + 1 ∆Bj
n +1(0) − λj

n + 1 + ∆λj
n + 1 

 
 
 
−1

′ U n + 1 ′ S n +1 Wn + 1 SnUn ∆Bj
n(0) − ∆Bj

n 
 

 
 

 
 

 
 

(5.4.20)

where ∆Bj
n  is the value of ∆Bj  which applied in iteration n.  Inclusion of the

background term in Eq. (5.4.20) ensures second order convergence along the lines

discussed by Rodgers (1976) with regard to treatment of the a priori term.

5.4.6 Convergence Criteria

Solving Eq. 5.4.20 finds solutions to the radiative transfer equations which minimize

weighted residuals of observed and computed brightness temperatures, corrected for the

background term.  To test convergence of the solution, the weighted residual is monitored

R = ∆Θ − δ Θ( )′ ′ V  V ∆Θ − δΘ( ) 
 

 
 

1 / 2

(5.4.21)

where the weight matrix V accounts for noise effects on the channel residuals, as

well as the relative information content of the channels with regard to the variables being

solved for.  For example, if a channel (or linear combination of channels) carries little

information content in terms of signal-to-noise, it is given little weight in the estimation

of the residual in Eq. (5.4.21).  An appropriate choice of V, expressing the information

content of the channels is

V = λ j + ∆λ j( )−1
′ T  W( ) (5.4.22)

in which case we obtain

R = ∆ ′ B ∆B[ ]1 / 2
(5.4.23)

As shown in Eq (5.4.23), a reasonable way to determine if the solution has

converged, in terms of weighted residuals, is to see if the solution converges in terms of

the iterative changes in the solution itself.  Initially, ∆Bj = 0  if Φ j
1 < 0.05 , that is,
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coefficients of very heavily damped components with little information content are given

no weight.  The solution is said to have converged when the RMS value of ∆Bj
n  is less

than 10% of the RMS value of δ˜ B 
n for all components not set equal to zero.  The

iterative procedure is also terminated if the RMS value of ∆Bj
n  is not less than 75% of

∆Bj
n−1  for the non-zero components.  This indicates the solution is not converging

rapidly enough and is responding primarily to unmodeled noise.  The iterative procedure,

which usually converges in 3 iterations, is carried out analogously for all retrieval steps.

 5.4.7 The retrieval noise covariance matrix

The retrieval noise covariance matrix M used in Eq. (5.4.11) (writing W ≡ M−1 for

simplicity) is given by a sum of two terms

M ij = ( ˆ M ij + ˜ M ij)
dBi
dT

 
 

 
 Θi

−1 dB j

dT

 
 
  

 
 

Θ j

−1

(5.4.24)

where ˆ M  represents the error covariance in the reconstructed cloud-cleared

radiances and ˜ M  represents the error covariance in the radiances computed from the

estimated profile, as a result of errors in parameters assumed known (being held fixed) in

a retrieval step. ˆ M  is given in Equation (5.2.35).

The computational noise covariance matrix ˜ M  is designed to account for errors in

the computed cloud-cleared radiance, R i
n , resulting from errors in the geophysical

parameters used in the retrieval step.  It is assumed that these errors arise primarily from

errors in variables X j , assumed to be known and held fixed in the retrieval step.  ˜ M  is

modeled according to

˜ M ii =
∂R i

∂X j
δX j

n 

  
 

  
j

∑
2

+ (0.12)
dBi
dT

 
 

 
 Θi

2
(5.4.25)

and
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˜ M i ′ i =
∂R i
∂X jj

∑
∂R ′ i 
∂X j

δX j
n2

(5.4.26)

where 
∂Ri

∂X j
 represents the derivative of R i

n  with respect to parameter X j  and δX j
n  is

the estimated uncertainty in parameter X j  in iteration n.  The parameters used for X j  in

modeling ˜ M  represent uncertainties in surface skin temperature, surface emissivity and
surface reflectance, as well shifts in the temperature profile, and multiplication of the

water vapor and ozone profiles by functions of height.  The derivatives 
∂Ri

∂X j
 are

computed empirically.  The term 0.1 in Eq. (5.4.25) is taken to represent additional

unmodeled errors.  Appropriate functions δXn (P)  are computed for each pass m in a
manner to be described below.

5.4.8 Variable and Channel Selection

5.4.8.1 Surface Parameter Retrieval

Channel radiances depend on several unknown surface parameters: the surface skin

temperature (Ts ); the spectral emissivity, ε ν( ) , and bi-directional reflectance ρ ν( ); and

the microwave spectral emissivity (εm ).  The retrieval uses 88 infrared window channels

and 6 microwave window channels.  Inclusion of the microwave window channels

stabilizes the surface parameter retrieval and also provides one piece of information about

the microwave spectral emissivity.

In the surface parameter retrieval, w infrared window channels are selected from

both long- and short-wave infrared window regions generally avoiding even weak

absorption lines.  For window channels, the transmittance at the surface, τ(ps ), is

generally close to unity.  Although the opacity of infrared window channels is small,

there is absorption and emission due to the water vapor continuum and the nitrogen

continuum, both absorbing primarily in the lowest portions of the atmosphere.  Therefore,

the radiance in window regions depends not only on Ts , ε(ν), and ′ ρ (ν), but also on the

temperature and moisture in the boundary layer.  The radiances of window channels do

not depend appreciably on temperature and moisture above the boundary layer.  To

account for the additional dependencies in the surface parameter retrieval, two additional

variables are solved for by scaling the total precipitable water (  ∆ln W ) and shifting the
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air temperature (∆TAIR ).  A few channels centered on weak water vapor absorption lines

are included to help account for these additional variables that are subsequently modified

in the temperature and moisture retrievals.  These weak water vapor lines are in the 3.7

µm window and are sensitive to water vapor absorption as well as reflected solar

radiation.  The reflected solar radiation causes the surface to appear hotter than in other

window regions not affected by reflected solar radiation.  Therefore, in the short

wavelength window, the contrast between the radiance leaving the surface and that

emitted by the boundary layer is enhanced.  This effect, coupled with the increased path

length of the solar radiation, makes channels on weak water vapor lines in this window

very sensitive to water vapor in the boundary layer.  Several of the channels in the

surface parameter retrieval are also used later in the moisture profile retrieval.  Currently,

no attempt is made to shift the temperature profile in any pass because the input

temperature profile agrees with the AMSU radiances and is assumed to be accurate

enough.  The water vapor profile is scaled in the second pass surface parameter retrieval

because a water vapor profile is retrieved using AIRS infrared channels in the first pass.

When scaling the water vapor, profile, a total of fourteen variables are solved for in

the surface parameter retrieval for daytime cases (eleven for nighttime cases).  The

perturbation functions include a perturbation to Ts , a perturbation to each of 8 infrared

spectral emissivity functions, 3 spectral bi-directional reflectance functions, and a scaling

of the water vapor profile, and a piece of information about the microwave spectral

emissivity.  The values of the perturbations are selected to give comparable values of the

S matrix for a typical case.  If all perturbation functions Fj  were half as large, Sij  would

be half as large for each mode, and the solution vector ∆A j  would be twice as large.  The

perturbations are large enough to produce significant S matrix elements, but not so large

as to produce an appreciable non-linear response.

The Jacobian or sensitivity matrix Sn  is computed every iteration.  The partial

derivative of channel radiance with respect to the coefficients of each of the above

functions are computed empirically as follows:  (1) Compute the ith  channel radiance

using the n
th
 iteration parameters (i.e., Ts

n , εn(ν) , qn (P) , etc.) (2) Compute the ith
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channel transmittance (if necessary) and radiance using the n
th
 iteration parameters but

setting the coefficient (∆A j)  of perturbation function Fj  to unity.  (3) The sensitivity Sij,

related to the change in channel radiance per unit change in coefficient ∆A j, is given by

the difference in radiances computed in steps (1) and (2), divided by (dB/ dT)Θi
n .  The

sensitivity or partial derivative of radiance with respect to surface temperature, spectral

emissivity, and surface bi-directional reflectance can be computed theoretically by

differentiating the clear column radiative transfer equation because the transmittance

functions do not depend on these parameters.

After the sensitivity matrix is computed, the inversion procedure described earlier

proceeds.  In the surface temperature retrieval, modeled channel computational noise is

not included in the noise covariance matrix, but includes only an estimate of 0.1K for

unmodeled computational noise from other sources in Equation (5.4.22). The retrieved

values of Ts , ε(ν), and ρ(ν) are held constant and used in the subsequent iterative steps

for temperature, moisture, and ozone profile retrievals.  The shifted water vapor profile

are held fixed in the transmittance and radiative transfer calculations for the temperature

profile retrieval and used as the first guess in the water vapor retrieval.

5.4.8.2 Temperature Profile Retrieval

The temperature profile retrieval problem is set up and solved in a manner

completely analogous to the surface parameter retrieval.  The solution for the retrieved

temperature profile is written in the form

  
Tn Pl( ) = To Pl( ) + F j Pl( )

j=1

J

∑ A j
n = To Pl( ) + FA

(5.4.27)

where   l
 
ranges over the number of levels used to compute channel transmittances

and radiances, and j ranges over the number of functions that are solved for, currently set

to 14.  The functions in the surface parameter retrieval are taken as discrete changes in

different surface or atmospheric parameters.  Following the approach of the surface

parameter retrieval, the functions Fj  are selected as localized functions of pressure,
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corresponding to changes in temperature primarily in a layer from Pj to Pj−1.  Use of

localized functions is convenient for computing the S matrix and makes the problem

more nearly linear.  The methodology discussed previously does not require the functions

to be orthogonal.  In order for the solution to be continuous, the functions chosen are

trapezoids, with a value of 0.5K between Pj  and Pj−1 and falling linearly in log P to 0K

at Pj+1 and Pj−2 .  The highest and lowest functions in the atmosphere are special cases,

with values of 1K at the upper or lower limit of the atmosphere (1 mb or the surface),

0.5K at the adjacent pressure, and followed by 0K at the next pressure level.

The Jacobian matrix is computed exactly as in the surface parameter retrieval.  In

any iteration, transmittances and radiances are computed for the temperature sounding

channels using Tn P( ) and T n P( ) + Fj P( ) , where Fj P( )  is one of the trapezoids, and the

Jacobian is obtained empirically according to

Sij
n = R i Tn P( ) + Fj P( )( ) − Ri Tn P( )( )[ ] dB

dT
 
 

 
 Θi

−1
. (5.4.28)

It can be shown that for an opaque temperature sounding channel, a shift of the entire

atmospheric temperature profile by 1K will cause roughly a 1K change in brightness

temperature (Susskind et al., 1984).  Moreover, a localized change of 1K in an

atmospheric layer containing the non-zero part of the channel's weighting function

likewise result in a 1 K change in brightness temperature.  This brightness temperature

change decreases as the layer becomes thinner than the weighting function.  To insure

sensitivity of at least one sounding channel to changes in the layer (or trapezoid)

temperatures, layers are selected to be sufficiently coarse as to have an element of the S

matrix of at least 0.2 for the layer.  While the Jacobian is profile dependent, the layer

structure used to define the trapezoid functions is held fixed for all soundings.  They are

selected so as to be neither too thin, resulting in lack of sensitivity, nor too coarse,

resulting in lack of resolution.  The pressure boundaries for the 14 functions used are

shown in Table 5.4.2.  According to Equation (5.4.27), the only structure in the solution

with finer spacing than these boundary levels must come from the initial guess.  In fact,

the transforming and damping functions, as discussed earlier, further decrease the ability
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of the solution to discern fine structure not contained in the information content matrix

′ S WS .  This damping is profile dependent.

In the first pass temperature profile retrieval, channels are selected which are

relatively insensitive to the ozone and water vapor distributions as these variables have

not been solved for, except for an estimate of the column water vapor content obtained in

the surface temperature retrieval step.  In addition, temperature-sounding channels are

selected between absorption lines to optimize the channel weighting functions (Kaplan et

al. 1977).  Along the lines of Kaplan et al. (1977) and outlined in Table 4.3.1, the

retrieval uses 96 channels in the 15 µm CO2 band, including the Q-branch near 666 cm-1

to sound the mid to upper stratosphere; channels in between CO2 absorption lines and

near the 720 cm-1 and 740 cm-1 Q-branches to sound through the upper troposphere; and

33 channels in the CO2 4.3 µm band P and R branches, primarily in the vicinity near 2380

cm-1, to sound the mid- to lower troposphere.  The noisiest spectral region is near 15 µm.

For this reason, many of the 15 µm channels represent spectral intervals sampled twice

per channel width.  This adds little information about the vertical structure but increases

signal-to-noise.  There are 12 AMSU channels included (3-14 from Table 2.3) in the

temperature profile retrieval.

Unlike Kaplan et al. (1977), 7 temperature sounding channels are included, which lie

between absorption lines in the 15 µm CO2 band, that are sensitive to the mid-lower

tropospheric temperature profile.  The inclusion of these channels does not appreciably

affect sounding accuracy under clear sky conditions but are significant under cloudy

daytime conditions.  This somewhat compensates for the increase in effective noise levels

of the 4.3 µm tropospheric sounding channels during sunlight conditions.  The selection

of these channels avoids spectral regions near water vapor lines of appreciable strength.

The channel radiances of the mid-lower tropospheric temperature sounding 15 µm

channels are still affected by water vapor due to the wings of nearby water vapor lines as

well as the water vapor continuum.  As described previously, our sounding methodology

involves two temperature profile retrieval steps, one (first pass) before the water vapor

retrieval, and the other (final pass) subsequent to it.  In the final pass, a number of

additional channels in the water vapor absorption band are included which produce sharp
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temperature weighting functions.  Even though the water vapor retrieval has been

performed, these channels are still treated as “noisy” in the channel noise covariance

matrix to the extent that the predicted uncertainty in water vapor distribution produces

uncertainty in the computed radiances.

Errors in the estimate of the water vapor profile used to compute the radiances,

produces errors in the computed brightness temperature for a given channel, as well as

correlated errors in other temperature sounding channels sensitive to water vapor

absorption.  These errors are accounted for in the noise covariance matrix ˜ M .

The effect of errors in the estimated water vapor profile on computed radiances, as

well as radiance errors due to errors in ozone profile and surface parameters, are taken

into account in the computational noise covariance matrix (Equations 5.4.25, 5.4.26). The

noise due to errors in the ozone profile is computed analogously to that for water vapor.

Temperature
retrieval

Moisture retrieval Ozone retrieval

0.016
0.975
2.701
5.878
11.00
18.58
51.53
89.52
142.4
190.3
314.1
478.0
661.2
827.4

surface

0.016
170.1
260.0
300.0
343.6
407.5
496.6
596.3
706.6
857.8

surface

0.016
20.92
51.53
71.54
103.0
142.4
300.0

surface

Table  5.4.2.  Trapezoid or Layer Endpoints
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Incorporation of these terms into the noise covariance matrix has the effect of

making channels sensitive to water vapor absorption, ozone absorption and/or the surface

temperature appear noisier.  It should be noted that in general, the mid-lower tropospheric

sounding 15 µm channels will be "noisier" for humid cases than for very dry ones, where

uncertainty in water vapor profile will have a smaller effect on the 15 µm radiances.

Conversely, 4.3 µm channels are “noisier” during the day than at night.

The contributions to the noise covariance matrix due to errors in estimated total

precipitable water and surface skin temperature are included for all temperature sounding

channels.  Neither is included in the ground temperature retrieval because both variables

are being solved for.  The estimated error in surface temperature is included in the noise

covariance matrix in the subsequent steps of water vapor profile retrieval and ozone

profile retrieval, and the estimated error in water vapor profile is also included in the

ozone profile retrieval, but not in the water vapor retrieval.

The retrieval step described above is done after the AMSU temperature profile

retrieval step has been completed.  That AMSU retrieval step is analogous, but uses only

AMSU channels and stratospheric AIRS temperature sounding channels, and solves for

one piece of information about the microwave spectral emissivity as well as coefficients

of the 14 temperature perturbation functions.

5.4.8.3 Water Vapor Profile Retrieval

Unlike the surface parameter and temperature profile retrievals, the water vapor

profile retrieval problem is highly non-linear.  A change in water vapor abundance in a

given level affects the transmittance in that layer as well as the atmospheric emission and

absorption at all lower levels in a complex manner.  Nevertheless, the problem is solved

in a completely analogous manner.  In the surface parameter retrieval, the entire water

vapor profile (up to 50 mb) is multiplied by a constant unknown factor.  Following this

form, the solution for the retrieved moisture profile is expressed as

  
qn Pl( ) = q0 Pl( ) 1 + Fj Pl( ) A j

n

j=1

J

∑
 

 
 

 

 
 , (5.4.29)
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where   l  ranges over the 64 levels used to compute transmittances and radiances, and

j ranges over J solution functions.  The functions   Fj Pl( )  are expressed as trapezoids with

a value of 0.05 in coarse atmospheric layers, in a manner analogous to that described

above for the temperature profile retrieval.  The endpoints of the 10 trapezoids used in the

moisture profile retrieval are included in Table 5.4.2.  The highest trapezoid has a value

of 0.05 at 170.1 mb and 260 mb and 0 at .016 mb and 300 mb. The lowest function is

comprised of two straight lines, with a value at the surface and 857.8 mb of 0.05, and a

value of 0 at 706.6 mb.

In the moisture retrieval, we include channels between absorption lines in the 6.3 µm

water vapor band that are sensitive to humidity throughout the troposphere.  These

channels provide sharper weighting functions (more localized absorption) than centers of

strong lines and make the problem more linear.  In addition, some channels are used on

the peaks of the strongest absorption features in the 6.7 µm band, which are sensitive to

stratospheric water vapor.  Channels are also included on and off weak water vapor

absorption lines in both the 11 µm and 8 µm windows, sensitive to the water vapor

continuum which improves the sounding capability for lower tropospheric humidity.

Channels in the 3.7 µm window provide improved sensitivity to low level moisture

during the day.  The S matrix is computed empirically exactly as in the temperature

profile retrieval.  The parameters determined from the surface and temperature profile

retrievals are kept fixed in the calculations.

In constructing the noise covariance matrix, terms for uncertainties in ground

temperature are included, as in the temperature profile retrieval, as well as a term shifting

the entire temperature profile, as done in the noise covariance matrix used in the

determination of η (Equation 5.2.15).

5.4.8.4 Ozone Profile Retrieval

The solution for the ozone profile retrieval has the same form as that for the moisture

retrieval.  The ozone retrieval uses 7 trapezoid functions with values of 0.05, as in the

water vapor retrieval.  The end points of the trapezoids are included in Table 5.4.2.  The

same steps outlined in the previous section are used to compute the Jacobian.  It is critical
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to solve for water vapor before ozone because ozone channels are sensitive to absorption

by boundary layer water vapor.  There are 23 channels in the 9.6 µm  ozone band selected

for the ozone retrieval.  Uncertainties in surface parameters, temperature profile, and

water vapor profile are included in the ozone noise covariance matrix.

5.4.8.5 Retrieval of Cloud Properties

The observed radiance for the ith  channel, R i , in a scene with j cloud types is given

by

R i = (1− α j
j

∑ )R i,CLR + α j
j
∑ Ri,CLD,j

(5.4.30)

where α j  is the fraction of the scene (in a nadir view) covered by cloud type j,

R i , C L R is the clear-column radiance for channel i (i.e., the radiance emerging from the

clear portion of the scene), and R i,CLD,j  is the ith  channel radiance emerging from the

cloudy portion of the scene covered by cloud type j (Chahine, 1982).

The computation of R i,CLD,j  for a given scene is complex due to the detailed

spectral absorption and reflection properties of clouds, cloud morphology within the

field-of-view, and geometric shadowing factors.  Assuming plane parallel cloud

formations and nadir viewing, R i,CLD,j  is expressed as

  

Ri , C L D , j= τicj
Ri (pcj

)τi (pcj
) + εic j

Bi(Tcj
)τi(pc j

) + Bi[T(p)]
dτi

dlnp

 

 
  

 

 
  

pc j

0
∫ dlnp

+ ′ ρ icj
Hi ′ τ i(pc j

)cos θo

(5.4.31)

where Ri(pcj ) is the upwelling radiance at cloud top pressure pcj
, and τicj

 and

εicj
 are respectively the transmissivity and emissivity of cloud type j at channel

frequency νi ,  B i (Tc j )  is the Planck function evaluated at channel frequency νi  and

cloud top temperature Tcj
, ′ ρ ic j

 is the cloud bi-directional reflectance of solar radiation
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incoming at solar zenith angle θo and outgoing in the direction of the satellite, ′ τ i(pcj ) is

the two path atmospheric transmittance from the top of the atmosphere to the cloud top

pressure pcj , and Hi is the solar irradiance.  In Eq. (5.4.32), the first term represents

upwelling radiation from below the cloud that passes through the cloud.  The second term

represents radiation emitted by the cloud that is transmitted by the atmosphere to the

satellite.  The third term represents that portion of the radiation absorbed and emitted by

the atmosphere above the cloud, and the fourth term represents solar radiation reflected

by the cloud in the direction of the satellite.  This neglects a small term due to

downwelling thermal radiation reflected off the cloud in the direction of the satellite.

If there is only one cloud type in the scene, Ri,CLD,1  is expressed as

  

Ri,CLD,1 = τic1
Ri,CLR + εic1

Bi(Tc1
)τi(pc1

) + (1− τic1
) Bi[T(p)]pc1

o∫
dτi

dlnp

 
 
  

 
dlnp

+ ′ ρ ic1Hi ′ τ i(pc1
)cos θo .

(5.4.32)

When retrieving cloud properties, the channels used are limited to those at

frequencies less than 1250 cm
-1
, for which the last term in equation (5.4.32) is not

significant.  Making the approximation that τic1
= (1 − εic1

), then equations (5.4.30 and

5.4.32) combine to give

R i = 1 − α1εic1( )Ri,CLR + α1εic1( ) Ri,CLD
B pc1( ) (5.4.33)

where Ri,CLD
B (pc1

)  is the radiance form a black cloud (τic = 0, εic = 1)  at cloud

top pressure pc1 .  It is apparent that the term α1 εic1
 appears only as a product in

equation (5.4.33).  Therefore α and εic are not determined independently, but only as a

product, which can be thought of as the radiatively effective cloud fraction that may be a

function of frequency.  To the extent that εic is a function of frequency, the frequency

dependent term α1 εic1
 is expressed as αεcν ( )1 F1 ν( ) where (αεcν )1 is a representative
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value of the effective cloud fraction α1 εic1
at a given frequency ν , and F1 ν( )  expresses

the frequency dependence of 
εcν
εcν 

 .

In the case of two cloud types, assuming τic2
= (1 − εic2

), then the radiances are

written as

Ri = (1 − α ε i,1 − α ε i,2)Ri,CLR + α ε i,1Ri
B(pc1

) + α ε i,2Ri
B(pc2

) (5.4.34)

where α ε i,1 and α ε i,2  are the radiatively effective cloud fractions for the clouds at

pc1
 and pc2

.  For the higher cloud at pc1
, α ε i,1 = α1 εic1

 as before.  On the other

hand, for the lower cloud

α ε i,2 = εic2
[α2 + (1 − εic1)α1α12] (5.4.35)

where α12  is the fraction of the area covered by cloud type 1 which is under-

covered by cloud type 2.  In equation (5.4.35), εic2
 multiplies the cloud fraction for

layer 2 as seen from above, and is comprised of two parts:  α12  is the fraction of the

scene covered only by clouds in layer 2, and (1 − εic1)α1α12  is that part of the scene

covered by clouds of both type 1 and type 2, which is seen through cloud type 1, with

transmissivity (1 − εic1) .  If either εic1
 is independent of frequency or α12  is the same

for all fields of view, this situation corresponds to two cloud formations.  In the first case,

the radiances are equivalent to a well-defined, frequency independent amount of each

type of black cloud.  In the second case, cloud type 1 has a constant spectral dependence

in each field-of-view which combines properties of cloud types 1 and 2.  To the extent

that (1 − εic1)  is frequency dependent, and α12  depends on field-of-view, this situation

actually contains three cloud formations, because the spectral dependence of radiances in

areas covered by clouds at both levels is different from that of clouds at either of the two

levels, in a manner that is field-of-view dependent.  The significance of this with regard

to determination of cloud-cleared radiances remains to be tested.  With regard to
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determination of cloud parameters, the spectral dependence of α ε i,2  contains the product

of two spectrally dependent terms εic2
 and εic1

.  To first order, α ε i,2 = αεc2
F2(ν)

but care must be taken in interpreting F2(ν).

Currently, cloud parameter retrievals have been attempted using the AIRS team

simulations, which contain two layers of clouds with constant known spectral emissivity

(=0.9) with α12  equal to zero for all fields-of-view.  Observations in each of the nine

fields of view k=1,9 were used to determine cloud parameters.  The channel radiances

R i , k is expressed as

R i , k= (1− ( α ε )1k − (α ε )2k )Ri,CLR + (α ε )1k Ri
B(pc1

) + (α ε )2k Ri
B(pc2

)

(5.4.36)

The cloud parameter retrieval is performed after all other parameters are solved for,

in an exactly analogous manner to that of all other retrieval steps.  Given a surface skin

temperature, surface spectral emissivity, and atmospheric temperature, moisture, and

ozone profiles, Ri,CLR  and Ri
B(pcj ) are readily computed.  The only unknowns in

equation (5.4.36) are (αε)jk (j = 1, 2; k = 1, 9), and pc1
 and pc2

.  Using R i , k in the 9

fields-of-view for the 15 µm and 8-12 µm channels used to determine η and to solve for

these 20 variables.  The noise covariance matrix N used to retrieve cloud parameters,

which represents both noise in the observations and uncertainties in the computed values

of Ri,CLR , is taken to be identical to that used to determine η (Eq. 5.2.15).

Given the n
th iteration cloud parameters α ε 1k

n , α ε 2k
n , pc1

n , pc2
n , define

Yik
n ≡ R i , k− Rik

n = R i , k− Ri,CLR( ) + α ε jk
n

j = 1,2
∑ Ri , C L R− Ri(pcj

n )
 
 
  

 
 

   (5.4.37)

where R i , k is the ith channel radiance in field-of-view k (Eq. 5.4.36) and R i , k
n  is

computed from the nth iteration parameters.  This gives rise to the iterative equation
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Yik
n +1 − Yik

n = Ri , C L R− Ri(pc
n

j)
 
 

 
 

 
 

 
 j = 1,2

∑ ∆α ε jk
n + α ε jk

n
−∂Ri(∂pcj

)

∂pcj

 

 
  

 

 
 

 

 
 
 

 

 
 
 j =1,2

∑ ∆pcj
m

= Sik, ∆αεjk
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j = 1,2
∑ α ε jk

n + Sik,∆pc j

n 

 
 

 

 
 

j = 1,2
∑ ∆pc j

n

(5.4.38)

where the terms in brackets are the appropriate Jacobians, computed empirically as

are all other Jacobians.  Note that if α ε jk  (for all k) and/or ∂Ri /∂p
cj

 (for all i) are small

for a given pcj
, the Jacobian for that cloud top pressure is small and the cloud top

pressure is contained primarily in a heavily damped mode and is not changed

significantly from the initial guess.  In analysis of simulation data thus far, the second

cloud formation usually contains small amounts of low clouds, and pc2
 is in general not

well determined from the data.

For our retrievals, the first guess cloud top pressures are taken as 350 mb and 650

mb, and the first guess effective cloud fractions taken as 0.25 for each cloud type.  The

solution is constrained such that pc1
≥ 100 mb , pc2

≤ ps − 50 mb  where ps  is the

surface air pressure.  In addition αε1,k + αε2,k are constrained to be ≤ 1.0 .  If the

second cloud fraction is either set very small in the first guess, or becomes very small in

the retrieval, no useful information about the second cloud top pressure is determined.

5.4.8.6 Rejection Criteria

A number of tests are made to test whether the retrieval is rejected.  The major cause

of rejection is difficulty in dealing with the effects of clouds on the AIRS radiances.

5.4.8.6.1 Assessment of the Cloud-Clearing Fit.

Equations (5.2.30), (5.2.29), and (5.2.25) give the solution for the vectors   
r 
η  and η

and the resultant clear column radiances ˆ R i .  If a successful solution is produced, the
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ensemble ˆ R i  for the cloud-clearing channels should match the incoming estimates of

cloud-cleared radiances R i , C L R to a reasonable degree.  A poor match is indicative of

either a particularly poor first guess or problems in handling the effects of clouds on the

radiances.  The weighted residuals of the clear-column radiances are computed, as used

in the computation of η in brightness temperature units

∆F =
( ˆ R i − Ri , C L R)

2 N ii
−1

i
∑

N ii
−1 ∂Bi

∂T

 
 
  

 Θ i

2

i

∑

 

 

 
 
 
 

 

 

 
 
 
 

1 / 2

 (5.4.39)

and reject the solution if ∆F  computed when generating   
v 
η 1 is greater than 1.75K.

5.4.8.6.2 Difficult Cloud Cases.

Cases with extensive cloud cover and low contrast are particularly difficult to

analyze.  The solution is rejected if the sum of the final retrieved cloud fractions for all

cloud layers is greater than 80% or the total cloud fraction is greater than 65% and the

noise amplification factor (see Equation 5.2.31) is greater than 2.5.

5.4.8.6.3 Large Residuals in Second Pass Retrievals.

The general iterative solution is terminated when either the residual Rn  (Equation

5.4.23) is less than 10% of the RSS of the predicted noise for each mode   δ
˜ B l , (Equation

5.4.17) or Rn  is more than 75% of Rn −1 .  Slow convergence indicates a poor solution.

The solution is rejected if the converged value of R is greater than 1.75 times the root-

sum-square of   δ
˜ B l  in either the surface parameter retrieval or the temperature profile

retrieval in the second pass.  Poor convergence generally indicates problems with the

clear column radiances ˆ R i
3.
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5.4.8.6.4 Inconsistency of Test “Microwave-Only” and Combined
Infrared/Microwave Retrievals.

Under some conditions, the cloud-cleared radiances ˆ R i
3 is poor but all convergence

tests are passed.  Nevertheless, the test microwave-only retrieval produces low level

temperatures which differ significantly from those of the second pass retrieval.  This

generally indicates poor cloud-cleared radiances.  The solution is rejected if the root-

mean-square differences between the temperature in the lowest 3 km of the test

microwave-only retrieval differs from that of the second pass retrieval by more than 2K.
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5.5 Tuning

To be useful for numerical forecasts, AIRS data must be consistent with data from

other sources such as radiosondes.  Errors in both the AIRS data and the other data

contribute to systematic differences between different data sets.  These are removed by a

statistical adjustment procedure.  There are other errors in the AIRS data that can be

recognized in the data and removed before the tuning step.  A linear shift in the detector

array is one example.  For tuning, it is assumed that these corrections have been made.  It

is also assumed that there exist matched pairs of radiance vectors, one calculated from

some measure of truth and one observed by AIRS.  The problem is to make an

adjustment to remove the systematic differences between the two sets of data.

Before proceeding, it is useful to discuss the procedures used to calculate radiances.

Although the calculation of radiances using the procedures of Section 4 is easy once the

atmospheric state is completely specified, radiosondes and other sources of information

often provide an incomplete description of the atmospheric state.  For example, a

radiosonde specifies the temperature and water vapor in the lower part of the atmosphere.

The radiances depend on these conditions as well as the conditions in upper atmosphere

and the surface skin temperature.  Estimates of these conditions can be obtained from the

satellite retrieval.  Values of other gases such as ozone can be obtained from the retrieval

as well.  When this is done, the adjustment will preserve the original calculated values for

the upper atmosphere where little independent knowledge of the atmosphere is available,

but it will adjust those variables in the lower atmosphere where an independent measure

of truth is available.  Further this is done in a way that minimizes the systematic

differences between the calculated value and the measure of truth.

5.5.1 Approach

To remove the systematic differences between the calculated and observed radiances,

one can be used to predict the other.  It is common practice to use the measured radiances

to predict adjustments to the calculated values because the data are frequently used in an

iterative retrieval procedure in which the radiances are calculated for a series of

successive iterations.  By using the measured values, the adjustment needs to be done
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only once.  If the calculated values are used as predictors, a new adjustment would have

to be calculated for the new estimate at each iteration.  We use a constrained regression

for the adjustment.  Using standard regression for the adjustment has some potential

problems.  One is that the regression is probably numerically unstable due to the large

number of highly correlated predictors.  A second is that unconstrained regression

coefficients are often physically unrealistic.  For example, channels with weighting

functions that peak high in the atmosphere often become major predictors for channels

with weighting functions which peak near the surface.  It is reasonable to expect that the

regression coefficients be slight perturbations to the identity matrix.  That is, the

calculated radiance for a given channel depends on the measured radiance for that

channel, with a coefficient that is nearly unity, while the dependence on other channels is

small.  This is the form one expects for a slight error in the weighting function peak

height.  The desired solution is given by the shrinkage operator (Oman et al., 1982).  The

particular derivation is found in the appendix of Crone et al.  (1996).  The shrinkage

estimator, Cs is obtained by finding the C that minimizes the trace of [(C-C0)
T (C-C0)]

subject to the constraint that the trace of [(  
r 
Y -C  

r 
X )(  

r 
Y -C  

r 
X )T] is held constant and where

C0 is an initial estimate for regression coefficients,   
r 
Y  is the value being predicted and

  
r 
X denotes the predictors.  In our case,   

r 
Y  is the adjustment, and   

r 
X  is the vector of

measured radiances.  The shrinkage estimator can be obtained by setting the derivative
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  2(C − C0) + γ (−2
r 
Y 

r 
X T + 2    C

r 
X 

r 
X T ) = 0 (5.5.1)

 which leads to

  Cs = (
r 
Y 

r 
X T + γ   C0)(

r 
X 

r 
X T + γ    I)−1 (5.5.2)

For current instruments with tens of channels, this form of the equation is adequate.

For a high spectral resolution instrument like AIRS, the number of channels increases by

a factor of about 100.  Not only does the large number of channels increase the

computations, the larger number, coupled with the fact that more channels are similar,

increases the numerical instability.  The retrievals are being done with linear

transformations such as eigenvectors or “super channels”, which are averages of channels

that are highly correlated with each other, or with a subset of the channels.  Many groups

of channels contain no unique information, but can be averaged to reduce the noise.  We

used eigenvector regression to suppress noise.  In this procedure, only the eigenvectors

associated with the largest eigenvalues are preserved.  We note that, while in general, an

equation of the form

  C = (
r 
Y − C0

r 
X )

r 
X T (

r 
X 

r 
X T )−1

(5.5.3)

produces regression coefficients that are equal to those given by standard least

squares regression, this is not the case if the small eigenvalues of   
r 
X 

r 
X T are suppressed.

We use eigenvector regression and use only the eigenvectors associated with the larger

eigenvectors.  Then, because we expect the calculated value for a channel to be the

measured value with a small correction, we set C0 equal to the identity matrix, I, to give

  C = (
r 
Y −

r 
X )

r 
X T(

r 
X 

r 
X T )−1

(5.5.4)

which leads to the solution

  
r 
Y = (I + C)

r 
X (5.5.5)

where the values of C are small because of the eigenvector constraint.  This is the

form that we want.  It produces a set of regression coefficients that give nearly the same

reduction in variance on the dependent set as is given by standard regression, but that
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have the desirable physical property that the calculated value for each channel is equal to

the measured value plus small corrections.  Details of the procedures for doing

constrained regressions have been documented in a series of papers (McMillin et al.

1989, Crone et al.  1996, Uddstrom and McMillin 1994a, Uddstrom and McMillin

1994b).  In the equations above, we have been using variables that have the mean

subtracted.  When the mean is included, equation (5.2.5) becomes

  
r 
Y = [Y − (I + C)X ]+ (I + C)

r 
X (5.5.6)

We also note that there may be occasions where it is desirable to have a correction

that depends on predictors other than radiances such as latitude.  This can be done by

adding columns to   
r 
X  so that   

r 
X '  has more columns than   

r 
Y and the identity matrix has

corresponding columns of zeroes added.  We add this capability because, while one

would expect the state of the atmosphere to be defined by the radiances, some current

adjustment approaches use other predictors and it is possible that some other predictors

that might lead to a more accurate adjustment.  This is an aspect that can’t be fully

determined until launch.  The initial system, while it allows for additional predictors to be

added, will not use this feature.
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6 UNCERTAINTY ESTIMATES

Error estimates of AIRS products, on a retrieval-by-retrieval basis, are an important

part of the dataset.  In deriving the first thermal and moisture product (section 5.3) an

error estimate is derived through the regression and minimum variance physical retrieval

using the observational noise covariance matrix (equation 5.3.33) and estimated as

thermal and moisture covariance matrix (5.3.35).  This chapter deals with the final

product (section 5.4) error estimates.  This involves estimating likely sources of error and

propagating them through the retrieval process.  These errors are also important in the

construction of the cloud-clearing noise covariance matrix ˜ M  (equation 5.2.15) and the

retrieval covariance matrix M (equations 5.4.23, 5.4.24).  In our discussion we

distinguish between error estimates of cloud-cleared radiances, discussed in section 5.2

and those of other “geophysical” products discussed here.

Equations (5.2.15) and (5.4.25) contain terms such as δT(P)n , indicative of expected

errors in retrieved parameters.  These errors are case dependent and can be estimated by

propagating expected errors through the retrieval system.  At any step in the iterative

process, the estimate of a parameter, such as T(P) n , is given by

  
T(P) j

n = To (P) j + ∑
k = 1

L
FjkAk

n = To(P) j + (FUBn ) j,1.  (6.1)

There are three contributions to the expected error δT(P) j .  The first contribution

comes from the null space error, arising from the error of the first guess in the space

outside that of the L eigenfunctions used to expand the solution.  The second component

arises from errors in the coefficients Bn .  The last contribution arises from the damping

of the solution in which (1-Φ ) of the first guess (or previous iteration) is believed for

each eigenfunction G.

The expected error in parameter X
j
n , δ X j

n , can be expressed in terms of errors in

the expansion coefficients A according to
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δX j
n = δX j

N + Fjk δAk( )2

k

∑
 

 
 

 

 
 

1 / 2

 (6.2)

where δX j
N  is the null space error and δAn  is the error in the coefficients An  used

to represent Xn .  These arise from both errors in the B coefficients and errors in the

damped portion of the first guess.  In every step in the iterative retrieval process, we

begin with parameters Xn − 1 having an uncertainty δX j
n −1.  The uncertainty of the first

guess is specified based on expected errors, as is the null space error.  If we knew the

signed errors of state Xj
n −1, δAn − 1 could be solved for exactly according to

(δAk
n − 1

)
2 = ( ′ F F)−1 ′ F (δXn − 1 − δXN ) = ( ′ F F)−1 ′ F (δ ˜ X n − 1

)
2 (6.3)

The magnitude of errors in a given state are only estimates.  It is preferable to use an

analogous form which averages the estimated errors of X over pressure layers in the

trapezoid functions F to approximate δAK
n − 1

(δAk
n − 1

)
2 =

1

Fmax, k

Fjk (δ ˜ X j
n −1)2

j
∑

∑
j

Fjk
 (6.4)

where Fm a x , k  is the largest value of F jk  in function k  .

In a given iteration, we can now express δAk
m  according to

  

δAk
n = ∑l Ukl ⋅

Φl
n

λl
n

 

 
  

 

 
 

2

+ ∑l U kl(1 − Φl
n ) U jl

2 (δ
j

∑ A j
n − 1
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(6.5)

where 

  

Φl
n

λl
n

  represents the predicted error in 
  
δBl

n  due to propagation of noise and

the second term represents the damped error of the previous iteration profile, with δAn−1
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coming from Equation (6.4).  Given δ Ak
n  from Equation (6.5), the corresponding profile

errors for use in Equations (5.2.15), (5.4.25), and (5.4.26) are computed according to

Equation (6.2).

For moisture and ozone profile, the form of the expansion is slightly different (see

Equation 5.4.29) and we write

δ qn (P) = qn −1( P ) δqN(P) + Fk (P)(δ Ak )2

k
∑

 

 
 

 

 
 g m / c m2

(6.6)

or

δ qn (P) = 100 δ qN(P) + Fk( P ) (δ Ak )2

k
∑

 

 
 

 

 
 %

(6.7)

Equation (5.4.44) is case dependent through the parameters   Φl  and   λl which

depend on the S matrix, and more significantly on the M matrix. M contains

contributions from clouds, ˆ M , and parameter uncertainty ˜ M .  The uncertainties

determined from Equations (6.3) and (6.7) in turn are used in the computation of ˜ M 

(Equation 5.4.25) and N (Equation 5.2.15).  The null space error is taken as 0.5K at all

levels and the first guess error is modeled as a function of first guess type. The null space

error in percent is taken as 5% for water vapor and ozone respectively.
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7 QUALITY ASSESSMENT

Separate plans have been drafted (to be released in early 2000) to describe the AIRS

implementation of quality assessment (QA) processing for each data level.  This section

gives a brief overview of these plans for the level 2 processing.  There is often confusion

when first encountering the concept of quality assessment and how this is distinguished

from quality control, data validation, diagnostics, and retrieved parameter uncertainties.

Appropriately enough, each EOS instrument team uses quality assessment processing

quite differently.  The AIRS implementation emphasizes diagnostics more than the other

elements.

AIRS quality assessment processing can be divided into two types.  The first type of

quality assessment is performed within the product generation software.  In the course of

data product generation, quality assessment parameters are calculated and quality

assessment results are reported.  Because this quality assessment information is

calculated and collected without user intervention, it is referred to as automatic quality

assessment.  During automatic quality assessment, a variety of summary statistics are

calculated which provide insight into product quality.  If these summary statistics indicate

a probable quality problem, a message is generated in the log, the product is flagged as

bad, and quality assessment personnel are notified that manual quality assessment is

required for that product.

Manual quality assessment is the second type of AIRS quality assessment and is

performed by a human operator.  If automatic quality assessment indicates that a product

is bad, the DAAC first checks to see if there was some type of DAAC operational

problem (e.g., input files were not staged and were unavailable during processing).  If so,

the problem is corrected and the product is re-generated.  If no operational problem is

found, manual quality assessment is performed at the AIRS Team Leader Science

Computing Facility (TLSCF) to determine the problem and whether it can be corrected.

During manual quality assessment the archived logs may be used as ancillary

information, along with other metadata.  Identification and correction activities conducted

within investigative quality assessment are also recorded for future reference.  Once these
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activities have been completed, the data product in question is marked as either good or

bad.

There is also a second form of manual quality assessment at the TLSCF, known as

routine quality assessment.  The normal data production stream will be sampled on a

daily basis to provide an additional check on data product quality.  On average, 10% of

the daily granule production will be examined, with sampling criteria supplied by the

AIRS Science Team.

The result of Level 2 Quality Assessment is a set of parameters describing retrieval

algorithms ‘health.’  The retrieval algorithm may fail in a number of ways, including

complete breakdown of one or several parts of the retrieval process (e. g. the microwave-

only retrieval).  Alternatively, individual retrieval processes may run to completion but

with some unusual computational characteristics (e. g.  final retrieval converges only

after very many iterations).  Additionally, quality assessment information from Level 1A

and Level 1B processing may affect retrieval algorithm functioning.  This information

must be propagated forward to the retrieval.  An example of such a situation would be

when fewer than nine AIRS spectra (but a sufficient number for cloud-clearing) are

available from Level 1B.  The most detailed quality assessment information is propagated

into the Level 2 Quality Assessment Support Product, produced only when diagnostic

options are switched on in the product generation executive.  It is intended to be produced

at the AIRS TLSCF to aid with problem-solving.

Many small quality assessment fields are included in all AIRS products.  For each

profile there are flags of processing paths taken and continuous variables reflecting such

parameters as speed and quality of algorithm convergence.  At a granule level, quality

assessment fields include counts of per-profile flags and statistics of per-profile

continuous variables.  Some of these granule-level quality assessment fields will be used

as Product-Specific Attributes so they can be used in ordering interesting data.
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8 IMPLEMENTATION OVERVIEW

8.1 AIRS Science Data Processing System

The core of AIRS Science Data Processing System (SDPS) has been designed

around several execution units or Product Generation Executables (PGEs); each tailored

to process a particular level of data for AIRS, AMSU, HSB and VIS instruments. The

Figure 8.1 shows a high level architecture of the AIRS SDPS.

The high level capabilities of these PGEs are:

• L1A PGEs:  decommutation, data-number to engineering unit conversion of
engineering & geolocation

• L1B PGEs:  Radiance conversion with appropriate corrections
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• L2 PGE:  retrieval of cloud, surface & atmospheric state

Each PGE can be run independently of each other, including the Level 2 PGE where

options exist to process through to any desired stage (e.g., microwave, first, or final

retrievals).  Not shown are additional PGEs.  The first group are designed to provide

summary or subset of the data products to create Browse images to facilitate data

ordering.  The second, referred to as the RaObs PGE, is designed to accumulate matchups

between coincident radiosonde and AIRS observations for tuning (see Section 5.5).

8.2 Data Storage and Data Processing Requirements

The AIRS SDPS requires approximately 73 GB of archive per day. Table below
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FIGURE 8.1 – HIGH LEVEL REPRESENTATION OF THE AIRS SDPS ARCHITECTURE OF PGES.
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summarizes the various categories of data required for processing as well as data

produces by the AIRS SDPS.

Data Product Type Volume
Level 0 data (primary input) 13 GB/day

Aviation forecast .03 GB/day
Radiosonde data .08 GB/day

Level 1A products 17 GB/day
Level 1B products 34 GB/day
Level 2 products 8 GB/day

Raobs matchup file .03 GB/day
Browse files .4 GB/day

Total 72.54 GB/day
Level 0 data: 54 MB per 6 minutes (granule) of data. Total per day is: 54*240 or 12.96

GB.
L1A data: 70 MB of level 1A for one granule of AIRS, HSB, AMSU, and VIS combined.

Total per day is 70*240 or 16.8 GB.
L1B data: 138 MB of level 1B for one granule of AIRS, HSB, AMSU, and VIS

combined. Total per day is 138*240 or 33.12 GB.
L2: 32 MB of output per granule. Total per day is 32*240 or 7.68 GB

8.3 Required input data

Geolocated, Calibrated Observed Radiances provided by L1B processing:

• AMSU-A
• HSB
• IRS
• VIS

Static Ancillary Data files provided by TLSCF:

• Decommutation Map
• Constant Sets
• Red and Yellow Limits
• Namelist giving default values for L2 parameters
• AMSU and HSB Sidelobe Correction Matrices
• AMSU and HSB Sunglint Data
• AMSU and HSB Cold Sidelobe Interpolation Arrays
• Lists of Channels to be used at various stages of retrieval
• Calibration Parameters for AMSU, HSB, AIRS and VIS
• AIRS Channels Frequency List
• AIRS Channels Focal Plan Map
• AIRS Correction Parameters and Spectral Features
• Climatology to set initial guess profiles
• Topographic data
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• Transmittances for AMSU, HSB and AIRS channels
• Angle Correction Coefficients
• Solar Radiances
• Tuning Coefficients
• Microwave Emissivity Coefficients
• Ancillary Error Estimates
• Covariance Matrices
• Eigenvector Matrices
• Radiance Regeneration Eigenvectors
• Tables of Contribution Weighting Functions
• MW to IR regression coefficients
• Principal Component Mode Regression Coefficients
• Principle Components for Angle Adjustment

Dynamic and Static External Ancillary Data Files provided at the DAAC:

• NCEP 1-Degree Aviation Model (AVN) Product
• Global 1 KM DEM
• Quality Controlled Radiosonde observations, including ship/buoy observations
• Third Generation Vegetation Index

8.4 Simulation System

The architecture of the AIRS SDPS simulation system and its role in validation and

verification of AIRS products is shown in the following figure 8.2. The current software

has a full level 0 to level 2 data product simulation with three goals in mind: (1) core

algorithm performance is based on the simulation, (2) robustness testing of the AIRS data

product algorithms is based partly on simulation, (3) data product validation requires an

extensive simulation effort.  The simulations are to be as realistic and challenging as

possible as well as extensive enough to provide a complete set of exception conditions.
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.

Early development used simulations based on 4 orbital tracks, each of approximately

a quarter orbit in length. Algorithm performance and simple testing has moved to focus

on using a number of shorter data granules of pairs of AMSU scanlines or 6 AIRS

scanlines (an AIRS data granule is normally 135 AIRS scanlines) with simple changes to

represent various geophysical conditions (noise-free, noisy, clear, cloudy, ocean, land,

etc.).  These simulations of AIRS/AMSU/HSB observations are based on the NCEP eta

model forecast for November 5, 1996.  Up to two cloud formations were present in each

AIRS footprint with cloud amounts and cloud top pressures predicted by the GCM.  The

cloud top pressures and amounts varied between the nine AIRS footprints encompassed

in the single AMSU footprint for which a retrieval was performed.  All other geophysical

parameters, including surface spectral emissivity and bi-directional reflectance, varied as

well.  Results are shown for the average of six scan lines with latitudes and longitudes in

the vicinity of 11N, 80E; 28N, 110W, and 0N, 116W.  Average cloud fractions in a single
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AMSU footprint ranged from 1% to 69%.  All cases were accepted by the rejection

criteria described in section 5.4.8.6

Figure 8.3 shows RMS layer mean temperature errors in roughly 1 km layers

between the surface and 200 mb and 3 km layers above.  Results are shown for the

microwave product, the AIRS regression, the first product retrieval and the final product

retrieval.  Also indicated on the plot are the errors in surface skin temperature as well as

the average RMS error in layers from 100 mb to the surface (called trop) and 700 mb to

the surface.  The microwave product has large errors beneath 500 mb, where the intrinsic

vertical solution is poor.  The AIRS regression guess improves over the microwave

retrieval in the mid- lower troposphere but still has 2 K errors near the surface, with an

average error in the lower troposphere of 1.51 K, compared to 2.67 K for the microwave

retrieval.  The first product retrieval significantly improves on the regression results,

especially beneath 200 mb.  While this is the portion of the atmosphere where results are

most affected by clouds, both the regression and first product results use the same cloud

cleared radiances, based on the first estimate of eta.  The first product has an average

RMS error of 1.0 K in the lower troposphere, but an error of 1.42 K in the lowest 1 km

layer.  The final product retrieval, which benefits from the use of improved cloud cleared

radiances, further improves on the first product retrieval, with a lower tropospheric

temperature error of 0.82 K, and a value in the lowest 1 km of roughly 1 K.  Results

above 100 mb are also roughly 0.2 K better in the final product retrieval compared to the

first product.
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Figure 8.4 shows results for the water vapor profile.  Values shown are for layer

precipitable water in roughly 2 km layers between the surface and 200 mb, plus results

for the layer between 200 mb on the top of the atmosphere.  Also indicated in the figure

is the error in total precipitable water.  The microwave product has an error in total

precipitable water of 6.8%.  2 km layer errors are typically in the range 10%-25%, with

the exception of water vapor between 300 mb and 400 mb, and above 200 mb.  The AIRS

regression and first product are poorer than the microwave product with regard to total

precipitable water and water in the lowest 2 km, but significantly improve on the

FIGURE 8.3  COMPARISON OF RETRIEVAL PERFORMANCE IN ATMOSPHERIC

TEMPERATURE AT EACH STAGE FROM MICROWAVE-ONLY (SECTION 5.1), FIRST

PRODUCT REGRESSION AND FIRST PRODUCT PHYSICAL RETRIEAVL (SECTION 5.3),
AND THE FINAL PRODUCT PHYSICAL RETRIEVAL (SECTION 5.4)
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microwave result at higher levels of the atmosphere. The first product is also significantly

more accurate than the regression guess above 800 mb.  The final product has RMS

errors better, or slightly poorer, than 15% at all levels in the atmosphere and is

comparable to the microwave product with regard to errors in total precipitable water and

water vapor in the lowest 2 km.

For robustness testing, a whole day of global data is being simulated to provide 240

full-sized AIRS granules.  This is intended to help prepare the Science Team for on-orbit

FIGURE 8.4  COMPARISON OF RETRIEVAL PERFORMANCE IN ATMOSPHERIC

HUMIDITY AT EACH STAGE FROM MICROWAVE-ONLY (SECTION 5.1), FIRST

PRODUCT REGRESSION AND FIRST PRODUCT PHYSICAL RETRIEAVL (SECTION

5.3), AND THE FINAL PRODUCT PHYSICAL RETRIEVAL (SECTION 5.4)
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validation activities where similar volumes of data will be needed, and test the quality

assessment process and the algorithm robustness.

The full day simulation has been centered on September 13, 1998.  This was selected

for no other reason than it coincided with a CAMEX-3 aircraft flight under fair weather

conditions and there are contemporaneous NOAA-15 AMSU-A and –B measurements

available. The simulation activity begins with a generation of level 2 “truth” data, which

actually span the time of 03:00 of 13 September 1998 through 03:00 of 14 September

1998. This data is linearly interpolated in time, bilinearly interpolated in the horizontal,

and linearly interpolated in log-pressure from the 3-, 6-, and 9-hr forecasts of the

Aviation run of the NCEP weather forecasting model. The UARS upper atmosphere

climatology was used for the mid-stratosphere through the mesosphere, and hypothetical

models were prescribed for the distribution of trace gases carbon dioxide, carbon

monoxide, and methane.  Since the Aviation run of the NCEP model does not forecast

cloud liquid water content (for this epoch), an approximate formula based on cloud-type

and cloud height is used to simulate liquid water content. The topography, land fraction,

and viewing geometry are all defined using the PGE toolkit. Since the toolkit-generated

topography differs from the NCEP surface geopotential height, the surface pressure was

adjusted adiabatically based on the forecast surface air temperature. The ground surface

temperature remained unchanged.  Results from testing the latest version of the Level 2

PGE are expected in early 2000.

8.5 Data Product Validation

A separate AIRS Validation Plan describes the detailed approach for AIRS data

product validation.  AIRS product validation activities are intertwined with instrument

calibration and retrieval algorithm.  The former are described in the AIRS Calibration

Plan.  Calibrated radiances and retrieved quantities from the AIRS system are the result

of a complex flow of data from the suite of AIRS/AMSU/HSB instruments and through

the data processing software.  There are potential sources of uncertainty at many points in

this flow, and all can corrupt the quantities ascribed geophysical significance.  Additional

uncertainties come from incomplete knowledge of the spectral information used in the
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infrared and microwave forward radiance models (See Chapter 4.0).  The ultimate

objective of validation is to establish the validity of the absolute value of the reported

geophysical parameters and equally importantly, their associated error bars.

The first stage in validation occurs before launch through instrument calibration and

testing, accompanied by algorithm testing with simulated data.  To first order these

activities establish the baseline from which on-orbit performance of the AIRS suite of

instruments can be validated.

In the early period of on-orbit operations for the second stage of validation, the AIRS

team will use geophysical observations from many sources to provide a qualitative

understanding of the instruments and processing system performance.  Although, these

vicarious observations are sometimes referred to as ‘truth’, they in fact have their own

uncertainties that must be taken into consideration.  The AIRS team has identified

vicarious observations presumed to be reasonably well understood.  The most important

of these include:

• radiosonde observations of atmospheric temperature
• buoy measurements of sea surface temperature
• ARM-CART site observations
• MODIS (EOS-Aqua) observations
• and CERES (EOS-Aqua) measurements

The latter two will be partially validated from their EOS-Terra observations, so that

we will have some understanding of their performance on EOS-Aqua. This places bounds

on the bias and variance of any residuals found in the comparisons of vicarious and AIRS

observations.  When conditions of unexpectedly large uncertainty are encountered, they

are taken as a probable indicator of problems of one of several types: poor instrument

calibration, spectroscopic uncertainty in the forward model, incorrectly parameterized

physics in the cloud clearing, and incorrect convergence within the retrieval algorithm.

Identifying and correcting these error sources will be the major activity of the AIRS

Science Team in the first year or more of AIRS operations.

The simplest AIRS measurements to be examined first are those obtained of cloud-

free ocean scenes.  This will eliminate dependence on cloud-clearing and minimize
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surface inhomogeneity effects on the observed radiance spectrum.  From there, the next

set of observations to be studied will include cloudy ocean scenes, then cloud-free land

scenes, and finally cloudy land scenes.

Only after most of the instrument and software errors have been corrected will the

third stage of validation begin.  This stage involves validating the reported error bars

associated with the AIRS data products.  These numbers are essential for AIRS data users

in any research or operational sense.  These require a sufficiently large ensemble of

colocated, coincident measurements to be statistically significant.
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ABBREVIATIONS AND ACRONYMS

AERI Atmospheric Emitted Radiance Interferometer

AIRS Atmospheric Infrared Sounder

AMSU Advanced Microwave Sounding Unit

AMSU-A Advanced Microwave Sounding Unit-A (a 20 channel microwave
radiometer)

AMSU-B Advanced Microwave Sounding Unit-B (a 5 channel microwave
radiometer)

AVHRR

C degrees Centigrade

COLR Clear Sky Outgoing Radiation

DAAC Distributed Active Archive Center

DB, dB decibel

EOF Empirical Orthogonal Functions

EOS Earth Observing System

ER-2 Earth Research-2 (NASA's civilian version of the Lockheed Skunkworks
U-2)

ESDIS Earth Science Distributed Information System

GHz Gigahertz (109 Hertz, or cycles/second)

GSFC Goddard Space Flight Center

HITRAN High Resolution Transmission Molecular Absorption Database

HSB Humidity Sounder of Brazil

IR InfraRed

JPL Jet Propulsion Laboratory

K degrees Kelvin

km kilometer (103 meters)

kPa kilopascal (103 pascal, equivalent to 10  bar)

L0-L4 Level 0 through level 4 (processing)

MHS Microwave Humidity Sounder

µm micrometer, micron (10-6 meter)

MODIS Moderate Resolution Imaging Spectroradiometer
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MPM87 Millimeter-wave Propagation Model (Liebe and Layton, 1987)

MPM89 Millimeter-wave Propagation Model (Liebe, 1989)

MPM92 Millimeter-wave Propagation Model (Liebe, et al, 1992)

MPM93 Millimeter-wave Propagation Model (Liebe, et al, 1993)

MSU Microwave Sounder Unit

MW MicroWave

NASA National Aeronautics and Space Administration

NCEP National Center for Environmental Prediction

NEDT Noise Equivalent Temperature Difference

NE∆T Noise Equivalent Temperature Difference

NEMS Nimbus-E Microwave Sounder

NESDIS National Environmental Satellite Data and Information Service

NEXRAD Next Generation Radar

NOAA National Oceanic and Atmospheric Administration

OLR Outgoing Longwave Radiation

RH Relative Humidity

SDPS Science Data Processing System

SIRS Satellite Infrared Radiation Spectrometer

SSM/T2 Special Sensor Microwave/Water Vapor Profiler

THz terahertz (1012 Hertz)

TIGR TOVS Initial Guess Retrieval

TIROS Television Infrared Observation Satellite

TLSCF Team Leader Science Computing Facility

TOVS TIROS Operational Vertical Sounder

VTPR Vertical Temperature Profile Radiometer
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